1
|
Liu H, Bing P, Zhang M, Tian G, Ma J, Li H, Bao M, He K, He J, He B, Yang J. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm. Comput Struct Biotechnol J 2023; 21:1414-1423. [PMID: 36824227 PMCID: PMC9941872 DOI: 10.1016/j.csbj.2022.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Identifying the potential associations between microbes and diseases is the first step for revealing the pathological mechanisms of microbe-associated diseases. However, traditional culture-based microbial experiments are expensive and time-consuming. Thus, it is critical to prioritize disease-associated microbes by computational methods for further experimental validation. In this study, we proposed a novel method called MNNMDA, to predict microbe-disease associations (MDAs) by applying a Matrix Nuclear Norm method into known microbe and disease data. Specifically, we first calculated Gaussian interaction profile kernel similarity and functional similarity for diseases and microbes. Then we constructed a heterogeneous information network by combining the integrated disease similarity network, the integrated microbe similarity network and the known microbe-disease bipartite network. Finally, we formulated the microbe-disease association prediction problem as a low-rank matrix completion problem, which was solved by minimizing the nuclear norm of a matrix with a few regularization terms. We tested the performances of MNNMDA in three datasets including HMDAD, Disbiome, and Combined Data with small, medium and large sizes respectively. We also compared MNNMDA with 5 state-of-the-art methods including KATZHMDA, LRLSHMDA, NTSHMDA, GATMDA, and KGNMDA, respectively. MNNMDA achieved area under the ROC curves (AUROC) of 0.9536 and 0.9364 respectively on HDMAD and Disbiome, better than the AUCs of compared methods under the 5-fold cross-validation for all microbe-disease associations. It also obtained a relatively good performance with AUROC 0.8858 in the combined data. In addition, MNNMDA was also better than other methods in area under precision and recall curve (AUPR) under the 5-fold cross-validation for all associations, and in both AUROC and AUPR under the 5-fold cross-validation for diseases and the 5-fold cross-validation for microbes. Finally, the case studies on colon cancer and inflammatory bowel disease (IBD) also validated the effectiveness of MNNMDA. In conclusion, MNNMDA is an effective method in predicting microbe-disease associations. Availability The codes and data for this paper are freely available at Github https://github.com/Haiyan-Liu666/MNNMDA.
Collapse
Affiliation(s)
- Haiyan Liu
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,College of Information Engineering, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Meijun Zhang
- Geneis Beijing Co., Ltd., Beijing 100102, PR China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, PR China
| | - Jun Ma
- College of Information Engineering, Changsha Medical University, Changsha 410219, PR China
| | - Haigang Li
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China
| | - Meihua Bao
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China
| | - Kunhui He
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China
| | - Jianjun He
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China,Corresponding authors at: Academician Workstation, Changsha Medical University, Changsha 410219, PR China.
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China,Corresponding authors at: Academician Workstation, Changsha Medical University, Changsha 410219, PR China.
| | - Jialiang Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, PR China,Geneis Beijing Co., Ltd., Beijing 100102, PR China,School of pharmacy, Changsha Medical University, Changsha 410219, PR China,Corresponding authors at: Academician Workstation, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
2
|
Zhu J, Ren J, Tang L. Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Mol Med Rep 2018; 17:7265-7273. [PMID: 29568950 DOI: 10.3892/mmr.2018.8760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/07/2017] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is characterized by invasion and migration. DNA methylation of CpG islands in tumor suppressor genes is considered to be an epigenetic mechanism underlying cancer development. Epigenetic silencing of a gene may be reversed by drugs, including genistein. The present study aimed to determine the effect of genistein on Wnt inhibitory factor 1 (WIF1) and invasion, and migration of colon cancer cells. The viability of HT29 colon cancer cells was suppressed by genistein in a dose dependent manner. Following 72 h of treatment with 10, 20 and 60 µmol/l genistein, increased demethylation of WIF1 was induced in a dose‑dependent manner. Additionally, the invasive/migratory abilities of cells treated with genistein decreased in a dose‑dependent manner. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to identify the mRNA and protein expression levels of invasion/migration‑associated factors. Following treatment with genistein, matrix metalloproteinase (MMP) 2 and MMP9 expression levels decreased, whereas the expression of metalloproteinase inhibitor 1 and E‑cadherin increased significantly. In addition, the expression levels of proto‑oncogene Wnt‑1 (Wnt‑1)/β‑catenin pathway‑associated factors, β‑catenin, c‑Myc proto‑oncogene protein and cyclin D1 decreased in a dose‑dependent manner following treatment with genistein. The invasive/migratory abilities of cells transfected with WIF1‑small interfering (si) RNA, and those transfected with WIF1‑siRNA and treated with genistein, increased notably compared with the control group. The present study demonstrated that genistein was able to inhibit the cell invasion and migration of colon cancer cells by inducing demethylation, and recovering the activity of WIF1 by altering the expression of invasion‑associated factors, and components of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|