1
|
Ma J, Na S, Wang P, Li J, He S, Liu F. miR-626 Inhibition Enhanced the Radiosensitivity to Oral Squamous Cell Carcinoma via the Downregulation of Nuclear Factor Kappa-B Signaling. Cancer Biother Radiopharm 2024; 39:144-152. [PMID: 35549438 DOI: 10.1089/cbr.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The effect of miR-626 on the radiosensitivity to oral squamous cell carcinoma (OSCC) was evaluated in this study. Materials and Methods: The level of miR-626 in OSCC patients was determined by analyzing the data of miRNA microarray GSE113956. miR-626 was overexpressed by miR-626 mimics and knockdown were performed by miR-626 inhibitor. The level of miR-626 was detected by quantitative real-time polymerase chain reaction. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays were used to detect the effect of miR-626 on the growth of OSCC cells. Flow cytometry was used to detect the apoptosis of OSCC cells. Western blot and dual luciferase reporter assays were used to explore the underlying mechanism of miR-626 regulating the radiosensitivity to OSCC. The effect of miR-626 on the radiosensitivity to OSCC were examined in an in vivo xenograft model. Results: The serum miR-626 level of OSCC patients was significantly higher than that of healthy controls. miR-626 mimics significantly promoted the OSCC cell growth, but the miR-626 inhibitor significantly suppressed the OSCC cell growth. Radiation combined with the miR-626 inhibitor significantly suppressed the cell proliferation and promoted the apoptosis of SCC-4 and HSC4 cells. Moreover, miR-626 regulates the nuclear factor kappa-B (NF-κB) signaling mediated by TRAF-interacting protein with forkhead-associated domain B. Furthermore, inhibition of miR-626 enhances the radiosensitivity to OSCC in nude mice. Conclusions: miR-626 inhibition enhanced the radiosensitivity to OSCC through the downregulation of NF-κB signaling.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
- Department of Endodontics and Affiliated Stomatology Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Panxi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jinyi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shuyang He
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P.R. China
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
2
|
Dżaman K, Czerwaty K, Reichert TE, Szczepański MJ, Ludwig N. Expression and Regulatory Mechanisms of MicroRNA in Cholesteatoma: A Systematic Review. Int J Mol Sci 2023; 24:12277. [PMID: 37569652 PMCID: PMC10418341 DOI: 10.3390/ijms241512277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Cholesteatoma is a temporal bone disease characterized by dysfunctions of keratinocytes. MicroRNAs (miRNAs) are evolutionary conserved noncoding RNAs that regulate mRNA expression. They can be packaged into exosomes and transported to target cells that can be used in the future therapy of cholesteatoma. This study aimed to collect knowledge on the role of miRNAs and exosomal miRNAs in cholesteatoma and was conducted according to the PRISMA guidelines for systematic reviews. Four databases were screened: Pubmed/MEDLINE, Web of Science, Scopus, and the Cochrane Library. The last search was run on the 6th of June 2023. We included full-text original studies written in English, which examined miRNAs in cholesteatoma. The risk of bias was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool, modified for the needs of this review. We identified 118 records and included 18 articles. Analyses revealed the downregulation of exosomal miR-17 as well as miR-10a-5p, miR-125b, miR-142-5p, miR34a, miR-203a, and miR-152-5p and the overexpression of exosomal miR-106b-5p as well as miR-1297, miR-26a-5p, miR-199a, miR-508-3p, miR-21-3p, miR-584-5p, and miR-16-1-3p in cholesteatoma. The role of differentially expressed miRNAs in cholesteatoma, including cell proliferation, apoptosis, the cell cycle, differentiation, bone resorption, and the remodeling process, was confirmed, making them a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| |
Collapse
|
3
|
Tzeng HE, Tang CH, Tsai CH, Chiu CH, Wu MH, Yen Y. ET-1 Promotes Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells via the microRNA-489-3p /TWIST Axis. Onco Targets Ther 2021; 14:5005-5018. [PMID: 34675545 PMCID: PMC8502871 DOI: 10.2147/ott.s294312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) constitutes almost 90% of head and neck malignancies and has a poor prognosis. To improve the efficacy of OSCC therapy, it is of great significance to explore other therapy for OSCC. Endothelin-1 (ET-1), a potent vasoconstrictor peptide, is implicated in cancer pathogenesis. Moreover, ET-1 promotes epithelial-mesenchymal transition (EMT) during the development of human cancers. We further to found that ET-1 exposure induced EMT in human squamous cell carcinoma cell lines SCC4 and SAS, by enhancing the expression of EMT biomarkers N-cadherin and vimentin and reducing E-cadherin expression via upregulation of the transcription factor TWIST. MATERIALS AND METHODS Cell motility was examined by migration, invasion and wound-healing assays. Quantitative real time polymerase chain reaction (q-PCR), and promoter assays confirmed the inhibitory effects of ET-1 on miRNAs expression in oral cancer cells. We demonstrate an intravenous injection model of lung metastasis followed by an advanced method for quantifying metastatic tumor using image analysis software. RESULTS In addition, ET-1/ETAR reduced levels of microRNA-489-3p (miR-489-3p), a transcriptional repressor of TWIST. We have identified a novel bypass mechanism through which ET-1/ETAR are involved in TWIST signaling and downregulate miR-489-3p expression, enabling OSCC cells to acquire the EMT phenotype. Notably, ET-1 knockdown dramatically decreased levels of EMT markers and cell migration potential. CONCLUSION The role of ET-1 in OSCC progression is supported by our findings from an in vivo murine model of OSCC. ET-1 may therefore represent a novel molecular therapeutic target in OSCC metastasis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- PhD Program & Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Division of Hematology/Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Min-Huan Wu
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taichung, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Informatics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Alizadeh-Fanalou S, Khosravi M, Alian F, Rokhsartalb-Azar S, Nazarizadeh A, Karimi-Dehkordi M, Mohammadi F. Dual role of microRNA-1297 in the suppression and progression of human malignancies. Biomed Pharmacother 2021; 141:111863. [PMID: 34243098 DOI: 10.1016/j.biopha.2021.111863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded and tiny RNAs that modulate several biological functions, more importantly, the pathophysiology of numerous human cancers. They are bound with target mRNAs and thereby regulate gene expression at post-transcriptional levels. MiRNAs can either trigger cancer progression as an oncogene or alleviate it as a tumor suppressor. Abnormal expression of microRNA-1297 (miR-1297) has been noticed in several human cancers suggesting a distinct role for the miRNA in tumorigenesis. More specifically, it is both up-regulated and down-regulated in various cancers suggesting that it can act as both tumor suppressor and oncogene. This review systematically highlights the different roles of miR-1297 in the pathophysiology of human cancers, explains the mechanisms underlying miR-1297-mediated tumorigenesis, and discusses its potential prognostic, diagnostic, and therapeutic importance.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shirin Rokhsartalb-Azar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah branch, Islamic Azad University, Kermanshah, Iran.
| |
Collapse
|
5
|
Kang Y, Zhang Y, Sun Y. MicroRNA‑198 suppresses tumour growth and metastasis in oral squamous cell carcinoma by targeting CDK4. Int J Oncol 2021; 59:39. [PMID: 33982769 PMCID: PMC8121097 DOI: 10.3892/ijo.2021.5219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs/miR) often contribute to the progression of oral squamous cell carcinoma (OSCC) via the regulation of mRNA. The present study aimed to investigate the role of miR‑198 in OSCC pathogenesis and explore the underlying mechanism. Reverse transcription‑quantitative (RT‑q)PCR was performed to determine miR‑198 expression in OSCC tissues and cell lines, and univariate and multivariate analyses were applied to evaluate the survival of patients with OSCC. The effects of miR‑198 on OSCC cell lines were studied in vitro and in vivo. A set of epithelial‑mesenchymal transition (EMT) markers were detected to determine whether miR‑198 was involved in EMT. Lastly, using luciferase assays, a novel target of miR‑198 was identified and the effect of the new target gene of miR‑198 on cell proliferation and invasion was also studied. It was identified that miR‑198 expression was decreased in OSCC tissues and cell lines, and low expression of miR‑198 was associated with poor overall survival and disease‑free survival. Overexpression of miR‑198 appeared to significantly inhibit the proliferation, invasion and EMT of OSCC cells. Moreover, the luciferase assay results showed that miR‑198 interacted with cyclin‑dependent kinase 4 (CDK4) by directly targeting the miRNA‑binding site in the CDK4 sequence, and RT‑qPCR results showed that CDK4 expression was increased in OSCC tissues and cell lines. In addition, transfection of small interfering RNA against CDK4 in OSCC cells showed similar inhibitory effects on cell proliferation, invasion and EMT, whereas CDK4 overexpression in OSCC cells partially reversed the inhibitory effects of the miR‑198 mimic. The present results indicated that miR‑198 suppressed OSCC tumour growth and metastasis by directly targeting CDK4 expression. Thus, miR‑198 may be a potential therapeutic target in the treatment of OSCC.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Ying Zhang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yan Sun
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
6
|
Wang L, Gao J, Zhang Y, Kang S. Silencing miRNA-1297 suppresses the invasion and migration of prostate cancer cells via targeting modulation of PTEN and blocking of the AKT/ERK pathway. Exp Ther Med 2021; 22:768. [PMID: 34055067 PMCID: PMC8145438 DOI: 10.3892/etm.2021.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) loss is a major contributing factor of prostate cancer (PC). miRNA-1297 was reported to serve role in various cancer types; however, the potential roles of miRNA-1297 in PC had not been investigated. In the present study, tumor and adjacent tissues were collected from patients with PC. The gene expression level of miRNA-1297 was measured via polymerase chain reaction. Results indicated that the miRNA-1297 was overexpressed in tumor tissues from PC patients and in PC cell lines. miRNA-1297 also contributed toward the progression of PC. PTEN was confirmed as the direct target of miRNA-1297 and bound with miRNA-1297 via four binding sites. The miRNA-1297 level was negatively associated with the PTEN level. Silencing miRNA-1297 or overexpression of PTEN significantly inhibited the cell migration and invasion. In addition, the AKT/ERK pathway was also inhibited following silencing of miRNA-1297 or overexpression of PTEN. Taken together, the results indicated that silencing miRNA-1297 exerted inhibitory effects on the invasion and migration of PC cells via modulating PTEN and blocking of the AKT/ERK pathway. The results of the present study provided a novel strategy for treatment of prostate cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jing Gao
- Department of Obstetrics and Gynecology, Tangshan Hongci Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yu Zhang
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
7
|
Li Q, Fu L, Han L, Li S, Zhang Y, Wang J. Long Noncoding RNA GAS5 Accelerates Cholangiocarcinoma Progression by Regulating hsa-miR-1297. Cancer Manag Res 2021; 13:2745-2753. [PMID: 33790648 PMCID: PMC8001187 DOI: 10.2147/cmar.s297868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been reported as important molecules in cholangiocarcinoma (CCA) occurrence and development. A previous study showed that lncRNA GAS5 (GAS5) was an oncogene in some tumors. But the role of GAS5 in CCA progression reminds unclear. This research was designed to study the expression and potential effects of GAS5 in the progression of CCA. Methods The expression of GAS5 in CCA tissues was evaluated through mining of the TCGA and GEPIA databases. qRT-PCR was applied to validate the results in our clinical samples. χ2 test was used to analyze the association between the expression level of tissue GAS5 and different clinicopathological parameters of CCA patients. The target gene of GAS5 was predicted by bioinformatic databases, and further verified by luciferase reporter assays. Finally, the role of GAS5 in CCA cells invasion and proliferation was detected by Transwell assay and CCK-8 assay. Results Compared to the adjacent nontumor tissues and the normal human intrahepatic biliary epithelial cell, the expression of GAS5 was markedly increased in CCA tissues (p<0.001) and cell lines (p<0.01), respectively. CCA patients with high GAS5 expression tended to present lymph node metastasis (p<0.001) and had advanced clinical stage (p=0.006). The bioinformatics analysis predicted that hsa-miR-1297 was the potential target gene of GAS5, which was validated by luciferase reporter assays. In addition, the function study showed that GAS5 acted as a “sponge” to downregulate hsa-miR-1297, thus modulating CCA cell proliferation and invasion. Conclusion GAS5 acts as an endogenous sponge of hsa-miR-1297 to promote CCA cell proliferation and invasion, which might be a potential biomarker and therapeutic target for CCA.
Collapse
Affiliation(s)
- Qian Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, People's Republic of China
| | - Lei Fu
- Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lili Han
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, People's Republic of China
| | - Shuai Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, People's Republic of China
| | - Yanling Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, People's Republic of China
| | - Jufeng Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, People's Republic of China
| |
Collapse
|
8
|
Chang XS, Zhu J, Yang T, Gao Y. MiR-524 suppressed the progression of oral squamous cell carcinoma by suppressing Metadherin and NF-κB signaling pathway in OSCC cell lines. Arch Oral Biol 2021; 125:105090. [PMID: 33676362 DOI: 10.1016/j.archoralbio.2021.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the present study was to explore the functional role of miR-524 in oral squamous cell carcinoma (OSCC) and determine its underlying mechanism. MATERIALS AND METHODS Tumor tissues and adjacent tissues were obtained from 55 patients with OSCC (20 females and 35 males) with a mean age of 54 years (range from 24 to 72 years). Additionally, OSCC cell lines culture was used and Reverse transcription‑quantitative PCR (RT-qPCR) was applied to measure the expression of miR-524 in OSCC tissues and cells. The protein density of Metadherin (MTDH) in OSCC tissues was detected by Immunohistochemistry (IHC) assay. MiR-524 mimic was employed to investigate the impact of miR-524 on proliferation, migration, and invasion using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and transwell assays. The dual luciferase reporter assay was utilized to investigate the interaction between MTDH and miR-524 expression. Cells transfected with miR-524 mimic and pcDNA-MTDH were subjected to western blot to investigate the role of NF-κB signaling in miR-524/MTDH axis mediated cell proliferation, migration, and invasion. RESULTS MiR-524 expression was decreased significantly in OSCC tissues compared to adjacent tissues, and closely related to clinical stage, tumor size, and lymph node metastasis. Over-expression of miR-524 suppressed the proliferation, migration, and invasion of OSCC cells. Luciferase reporter assay results demonstrated that MTDH was the target gene of miR-524. Over-expression of miR-524 reduced MTDH expression and inhibited NF-κB signaling pathway. Rescue experiments revealed that over-expression of MTDH partially reversed the efficacy of miR-524 mimic on OSCC cells. CONCLUSIONS These results indicated that miR-524 inhibits the activation of NF-κB signaling pathway via inhibiting MTDH, resulting in the suppression of cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xiang-Shuang Chang
- Department of Stomatology, The 964st Hospital, Changchun City, Jilin Province, China
| | - Jing Zhu
- Department of Nursing, The 964st Hospital, Changchun City, Jilin Province, China
| | - Tao Yang
- Department of Health Team, The 93313 Army, Changchun City, Jilin Province, China
| | - Ying Gao
- Department of Stomatology, The 964st Hospital, Changchun City, Jilin Province, China.
| |
Collapse
|
9
|
Expression level of VLDL receptor and VLDL-c levels in the malignant and benign breast tumors: The correlation with miRNA-4465 and miRNA-1297. Mol Cell Probes 2020; 53:101624. [DOI: 10.1016/j.mcp.2020.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
|
10
|
Li H, Lian B, Liu Y, Chai D, Li J. MicroRNA-1297 downregulation inhibits breast cancer cell epithelial-mesenchymal transition and proliferation in a FA2H-dependent manner. Oncol Lett 2020; 20:277. [PMID: 33014155 PMCID: PMC7520798 DOI: 10.3892/ol.2020.12140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women worldwide. MicroRNAs (miRs) may be involved in several types of human cancer, including gastric, liver, lung and breast cancer. The aim of the present study was to investigate the effect of miR-1297 on MDA-MB-231 cell epithelial-mesenchymal transition (EMT) and proliferation, and the underlying molecular mechanisms. MDA-MB-231 cells were transfected with miR-1297 inhibitor or inhibitor control for 48 h. Subsequently, MTT and flow cytometry assays indicated that miR-1297 inhibitor significantly decreased cell proliferation and induced apoptosis compared with the inhibitor control group. In addition, reverse transcription-quantitative PCR and western blotting suggested that miR-1297 inhibitor suppressed EMT in MDA-MB-231 cells compared with the inhibitor control group. TargetScan bioinformatics analysis and a dual-luciferase reporter gene assay were performed, which predicted that miR-1297 directly targeted fatty acid 2-hydroxylase (FA2H). Furthermore, MDA-MB-231 cells were transfected with control-plasmid or FA2H-plasmid for 48 h. The results demonstrated that FA2H overexpression decreased MDA-MB-231 cell proliferation and increased apoptosis compared with the control-plasmid group. Additionally, FA2H-plasmid increased E-cadherin expression levels, and reduced N-cadherin and matrix metalloproteinase 9 expression levels at both the protein and mRNA level compared with control-plasmid. Finally, MDA-MB-231 cells were transfected with control-small interfering (si)RNA, FA2H-siRNA, inhibitor control, miR-1297 inhibitor, miR-1297 inhibitor + control siRNA or miR-1297 inhibitor + FA2H-siRNA, and the results suggested that the biological effects of miR-1297 inhibitor were reversed by co-transfection with FA2H siRNA. In conclusion, the present study indicated that miR-1297/FA2H might serve as a novel potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaobang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Dahai Chai
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
11
|
Solomon MC, Radhakrishnan RA. MicroRNA's - The vibrant performers in the oral cancer scenario. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:85-89. [PMID: 32612717 PMCID: PMC7310692 DOI: 10.1016/j.jdsr.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small non-coding (18–22 nucleotide) RNA molecules. These molecules regulate gene expression by either inhibiting mRNA translation or by degrading mRNA. A single miRNA can control the expression of target genes, and the expression of a target gene can be regulated by multiple miRNAs. They are key regulators of various biological and pathological processes. These include cell proliferation, development and tumorigenesis. Novel studies have discovered definite signature miRNAs in the initiation and progression of cancers. Interestingly, miRNAs have also been found in fragile genomic sites that are associated with increased cancer risk. These micro RNAs regulate the expression of several genes that play a crucial role in the transition of normal oral mucosa through dysplasia to malignancy. The aim of this review is to recapitulate the current understanding of the many miRNAs that have been identified, the genes that they target and the role that they play in the carcinogenic pathway. The review also highlights the prospective role of miRNAs in the diagnosis, prognosis and treatment of oral cancers.
Collapse
Affiliation(s)
- Monica Charlotte Solomon
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Anekal Radhakrishnan
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal, Wellcome Trust/DBT India Alliance Fellow, Director, International Relations, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Xu Y, Liu Y, Xiao W, Yue J, Xue L, Guan Q, Deng J, Sun J. MicroRNA-299-3p/FOXP4 Axis Regulates the Proliferation and Migration of Oral Squamous Cell Carcinoma. Technol Cancer Res Treat 2020; 18:1533033819874803. [PMID: 31500519 PMCID: PMC6737863 DOI: 10.1177/1533033819874803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are noncoding RNAs of 21 to 23 nucleotides in length that play important roles in almost all biological pathways. The roles of microRNA-299-3p in the development and progression of oral squamous cell carcinoma remain unclear. Expression level of microRNA-299-3p in oral squamous cell carcinoma cell lines was analyzed. Then, the effects of microRNA-299-3p on oral squamous cell carcinoma cell proliferation and migration were investigated. Moreover, bioinformation algorithm and Western blot were conducted to explore whether forkhead box P4 was a direct target of miR-299-3p. We showed that microRNA-299-3p expression was significantly reduced in oral squamous cell carcinoma cell lines. Next, overexpression of microRNA-299-3p was found to inhibit oral squamous cell carcinoma cell proliferation and migration but promote apoptosis. In addition, forkhead box P4 was identified as a functional target of microRNA-299-3p. Our results provide a new perspective for the mechanisms underlying the progression of oral squamous cell carcinoma and a novel target for the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yaoxiang Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlin Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lingfa Xue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qunli Guan
- Department of Oral Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jing Deng
- Department of Oral Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jian Sun
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
13
|
Kondoh N, Mizuno-Kamiya M, Umemura N, Takayama E, Kawaki H, Mitsudo K, Muramatsu Y, Sumitomo S. Immunomodulatory aspects in the progression and treatment of oral malignancy. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:113-120. [PMID: 31660091 PMCID: PMC6806653 DOI: 10.1016/j.jdsr.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation substantially affects the risk of oral malignancy. Pro-inflammatory cytokine, interferon (IFN)-γ, confers anti-tumor activity using several different mechanisms. Conversely, higher expression of interleukin (IL)-17 is associated with worse prognosis. Monocyte chemotactic protein (MCP)-1 correlates positively with poor long-term survival of head and neck squamous cell carcinoma (HNSCC) patients. IL-1α affects cancer associated fibroblasts and macrophages, and promote several malignant phenotypes including immune suppression. Some anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-β, relate to pro-tumoral activities. Among immune checkpoint modulators, programmed death (PD-)1 and PD-ligand (L)1 facilitate oral squamous cell carcinoma (OSCC) cell evasion from immune surveillance, and the expression status of these has a prognostic value. OSCCs contain tumor associated macrophages (TAMs) as major stromal cells of their tumor microenvironment. Among the two distinctive states, M2 macrophages support tumor invasion, metastasis and immune suppression. Crosstalk between TAMs and OSCC or cancer-associated fibroblasts (CAF) plays an important role in the progression of OSCC. Clinical trials with blocking antibodies against IL-1α or melanoma-associated antigens have been reported as therapeutic approaches against OSCCs. The most promising approach activating antitumor immunity is the blockade of PD-1/PD-L1 axis. Manipulating the polarization of pro-tumorigenic macrophages has been reported as a novel therapeutic approach.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasunori Muramatsu
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
14
|
Chen Z, Zhang M, Qiao Y, Yang J, Yin Q. MicroRNA-1297 contributes to the progression of human cervical carcinoma through PTEN. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1120-1126. [PMID: 29916735 DOI: 10.1080/21691401.2018.1479711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The human cervical carcinoma oncogenic mechanisms still remain elusive. Thus, we proposed to understand the biological role of a newly discovered therapeutic miRNA. METHODS MiR-1297 related to human cervical carcinoma was selected for this study. TaqMan qRT- PCR assay was used to profile miRNA, phosphatase and tensin homolog (PTEN) expression in randomly chosen tumour with non-tumour tissues, and the apoptosis factors expression. Cell proliferation was monitored by CCK-8 assay and colony formation assay. Apoptosis was determined by flow cytometry. Protein level was determined by western blotting. 3'UTR was performed to validate the direct binding sites of miR-1297 on PTEN. SPSS was used for statistical analyses. RESULTS MiR-1297 is repressed and PTEN activated in human cervical cancer tissues. After miR-1297 overexpression, HeLa cells had an increase in cell proliferation and decrease in apoptosis. PTEN expression is negatively correlation with miR-1297. PTEN silencing display the similar pattern as miRNA-1297 overexpression to inhibit HeLa cell growth and apoptosis in vitro. CONCLUSIONS Our data indicate that miR-1297 contribute to the human cervical carcinoma through PTEN. miR-1297 could be a reasonable miRNA for future studies.
Collapse
Affiliation(s)
- Zhihua Chen
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Mengzhen Zhang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuhuan Qiao
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Junjuan Yang
- b Women&infants Hospital Of Zhengzhou , Zhengzhou , China
| | - Qinan Yin
- c National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|