1
|
Wang M, Li J, Yin Y, Liu L, Wang Y, Qu Y, Hong Y, Ji S, Zhang T, Wang N, Liu J, Cao X, Zao X, Zhang S. Network pharmacology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis. Ann Med 2022; 54:3219-3233. [PMID: 36382627 PMCID: PMC9673803 DOI: 10.1080/07853890.2022.2095665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic inflammatory disease, often cause carcinogenesis, disability, and intestinal perforation. The JingFangFuZiLiZhong formula (JFFZLZ) shows a good effect against UC in the clinic. Hence, we aim to investigate the mechanisms between JFFZLZ and UC via network pharmacology data mining and in vivo experiments. METHODS We obtained active constituents and related targets from public databases. The overlapped genes between JFFZLZ and UC targets were further analysed by enrichment analysis. The active constituents and hub targets were used to construct molecule docking analysis. We finally screened out nine hub targets and their expressions were verified in the Gene Expression Omnibus database and UC rats' colon tissues after JFFZLZ treatment. RESULTS The results implied that JFFZLZ mainly regulated signal transduction, metabolites production, and inflammation pathways. The expression of STAT3, CXCL8, IL6, CXCL12, TNF, TP53, and PTPN11 were both upregulated in colon tissues of UC patients and UC rats. While RELA, EGFR, and TP53 were downregulated in UC patients, but upregulated in UC rats. Furthermore, JFFZLZ could repair UC rats' colon mucosal damage and promote the healing of ulcers via regulating the hub targets. CONCLUSION These results elucidated that the anti-UC effect of JFFZLZ was closely related to the inhibition of inflammatory response, inhibition of oxidative stress, and repairing colon mucosal damage through different signal pathways. The findings could contribute to a better understanding of the regulation mechanisms in JFFZLZ against UC.Key messagesJFFZLZ could reduce the inflammatory infiltration and repair UC rats' colon mucosal damage.Through the network pharmacology-based strategy and public database mining, we obtained the hub targets and key pathways between JFFZLF and UC.The mechanism of JFFZLZ against UC was inhibition of inflammatory response and oxidative stress by regulating the expression of the hub targets.
Collapse
Affiliation(s)
- Mengyuan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jianan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China.,CHINA-JAPAN friendship Hospital, Beijing, China
| | - Yuzhang Yin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Liying Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yanqiu Hong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Shuangshuang Ji
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Tao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Nan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jinlong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Jiang R, Chen X, Liao X, Peng D, Han X, Zhu C, Wang P, Hufnagel DE, Wang L, Li K, Li C. A Chromosome-Level Genome of the Camphor Tree and the Underlying Genetic and Climatic Factors for Its Top-Geoherbalism. FRONTIERS IN PLANT SCIENCE 2022; 13:827890. [PMID: 35592577 PMCID: PMC9112071 DOI: 10.3389/fpls.2022.827890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Camphor tree [Cinnamomum camphora (L.) J. Presl], a species in the magnoliid family Lauraceae, is known for its rich volatile oils and is used as a medical cardiotonic and as a scent in many perfumed hygiene products. Here, we present a high-quality chromosome-scale genome of C. camphora with a scaffold N50 of 64.34 Mb and an assembled genome size of 755.41 Mb. Phylogenetic inference revealed that the magnoliids are a sister group to the clade of eudicots and monocots. Comparative genomic analyses identified two rounds of ancient whole-genome duplication (WGD). Tandem duplicated genes exhibited a higher evolutionary rate, a more recent evolutionary history and a more clustered distribution on chromosomes, contributing to the production of secondary metabolites, especially monoterpenes and sesquiterpenes, which are the principal essential oil components. Three-dimensional analyses of the volatile metabolites, gene expression and climate data of samples with the same genotype grown in different locations showed that low temperature and low precipitation during the cold season modulate the expression of genes in the terpenoid biosynthesis pathways, especially TPS genes, which facilitates the accumulation of volatile compounds. Our study lays a theoretical foundation for policy-making regarding the agroforestry applications of camphor tree.
Collapse
Affiliation(s)
- Rihong Jiang
- Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
- College of Environmental Sciences and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xinlian Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Changsan Zhu
- Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Ping Wang
- College of Environmental Sciences and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - David E. Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, The Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA), Ames, IA, United States
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Kaixiang Li
- Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Ma J, Mo W, Zhang P, Lai Y, Li X, Zhang D. Constituent diversity of ethanol extracts from pitaya. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jinghua Ma
- College of Forestry Henan Agricultural University Zhengzhou China
| | - Wei Mo
- College of Forestry Central South University of Forestry and Technology Changsha China
| | - Pangpan Zhang
- College of Forestry Henan Agricultural University Zhengzhou China
| | - Yong Lai
- College of Forestry Henan Agricultural University Zhengzhou China
| | - Ximei Li
- College of Forestry Henan Agricultural University Zhengzhou China
| | - Dangquan Zhang
- College of Forestry Henan Agricultural University Zhengzhou China
| |
Collapse
|
4
|
Ruan X, Du P, Zhao K, Huang J, Xia H, Dai D, Huang S, Cui X, Liu L, Zhang J. Mechanism of Dayuanyin in the treatment of coronavirus disease 2019 based on network pharmacology and molecular docking. Chin Med 2020; 15:62. [PMID: 32536965 PMCID: PMC7289712 DOI: 10.1186/s13020-020-00346-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background At present, coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2, is spreading all over the world, with disastrous consequences for people of all countries. The traditional Chinese medicine prescription Dayuanyin (DYY), a classic prescription for the treatment of plague, has shown significant effects in the treatment of COVID-19. However, its specific mechanism of action has not yet been clarified. This study aims to explore the mechanism of action of DYY in the treatment of COVID-19 with the hope of providing a theoretical basis for its clinical application. Methods First, the TCMSP database was searched to screen the active ingredients and corresponding target genes of the DYY prescription and to further identify the core compounds in the active ingredient. Simultaneously, the Genecards database was searched to identify targets related to COVID-19. Then, the STRING database was applied to analyse protein–protein interaction, and Cytoscape software was used to draw a network diagram. The R language and DAVID database were used to analyse GO biological processes and KEGG pathway enrichment. Second, AutoDock Vina and other software were used for molecular docking of core targets and core compounds. Finally, before and after application of DYY, the core target gene IL6 of COVID-19 patients was detected by ELISA to validate the clinical effects. Results First, 174 compounds, 7053 target genes of DYY and 251 genes related to COVID-19 were selected, among which there were 45 target genes of DYY associated with treatment of COVID-19. This study demonstrated that the use of DYY in the treatment of COVID-19 involved a variety of biological processes, and DYY acted on key targets such as IL6, ILIB, and CCL2 through signaling pathways such as the IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cytokine–cytokine receptor interaction. DYY might play a vital role in treating COVID-19 by suppressing the inflammatory storm and regulating immune function. Second, the molecular docking results showed that there was a certain affinity between the core compounds (kaempferol, quercetin, 7-Methoxy-2-methyl isoflavone, naringenin, formononetin) and core target genes (IL6, IL1B, CCL2). Finally, clinical studies showed that the level of IL6 was elevated in COVID-19 patients, and DYY can reduce its levels. Conclusions DYY may treat COVID-19 through multiple targets, multiple channels, and multiple pathways and is worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430070 China.,Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Peng Du
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Xiangyang, 441021 Hubei China
| | - Kang Zhao
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Jucun Huang
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Hongmei Xia
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Dan Dai
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Shu Huang
- Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Xiang Cui
- Department of Liver Medicine, AnKang Hospital of Traditional Chinese Medicine, Ankang, 72500 Shaanxi China
| | - Liming Liu
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430070 China.,Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| | - Jianjun Zhang
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430070 China.,Department of Liver Medicine, Hubei NO.3 People's Hospital of Jianghan University, Wuhan, 430033 China
| |
Collapse
|