1
|
Ning Z, Ma C, Zhong W, Liu C, Niu J, Wang C, Wang Z. Compound mutation by ultraviolet and diethyl sulfate of protease producing thermophilic bacteria to hydrolyze excess sludge. BIORESOURCE TECHNOLOGY 2024; 395:130330. [PMID: 38224788 DOI: 10.1016/j.biortech.2024.130330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Excess sludge (ES), a resource-rich organic waste, can be solubilized by thermophilic enzymes to extract proteins for sludge reduction and resources recovery. To solve the problems of low hydrolysis effect of ES and low enzyme producing ability of wild thermophilic bacteria, ultraviolet and diethyl sulfate (UV-DES) were adopted to mutate thermophilic bacteria in this study. Mutation sites were detected and annotated by whole genome sequencing analysis. The results showed that UV-DES mutagenesis could effectively improve enzyme-producing capacity of thermophilic bacteria and promote the hydrolysis of ES. The protease activity of the mutant strain KT16 was 46.7 % higher than that of the original strain DC8. The protein extraction rate with enzyme produced by KT16 reached 83.3 %. The total content of proteins recycled through KT16 enzyme solution was 3539.6 mg·L-1, 18.4 % higher than that of DC8. This work provided a theoretical idea and technical guidance for the protein recovery from ES.
Collapse
Affiliation(s)
- Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Caiyun Ma
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Changwei Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhaoyang Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
2
|
Jatuwong K, Suwannarach N, Kumla J, Penkhrue W, Kakumyan P, Lumyong S. Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Front Microbiol 2020; 11:188. [PMID: 32117182 PMCID: PMC7034034 DOI: 10.3389/fmicb.2020.00188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37-67°C, respectively. The crystal structure of phytase has been studied in Aspergillus. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment.
Collapse
Affiliation(s)
- Kritsana Jatuwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Ph.D. Degree Program in Applied Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Watsana Penkhrue
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|