1
|
AlNadhari S, Abbasova G, Al-Qahtani WH, Zengin G, Islamov S, Mammadova AO, Azad AK, Mammadova S, Jaradat N, Babayeva U, Humbatov M, Ganbarov D, Beylerli O, Beilerli A, Toker ÖS, Biturku J, Kiren I. Assessment of the botanical origin of Saudi Arabian honey samples to identify pollen with chromatographic tools and packing and storage. Biomed Chromatogr 2024; 38:e5869. [PMID: 38599336 DOI: 10.1002/bmc.5869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The increasing demand for honey purification and authentication necessitates the global utilization of advanced processing tools. Common honey processing techniques, such as chromatography, are commonly used to assess the quality and quantity of valuable honey. In this study, 15 honey samples were authenticated using HPLC and GC-MS chromatographic methods to analyze their pollen spectrum. Various monofloral honey samples were collected, including Acacia, Hypoestes, Lavandula, Tamarix, Trifolium, and Ziziphus species, based on accurate identification by apiarists in 2023 from the Kingdom of Saudi Arabia. Honey analysis revealed the extraction of pollen from 20 different honeybee floral species. Pollen identified from honey samples using advanced chromatographic tools revealed dominant vegetation resources: Ziziphus species (23%), Acacia species (25%), Tamarix species (34%), Lavandula species (26%), Hypoestes species (34%), and Trifolium species (31%). This study uses HPLC to extract phenolic compounds, revealing dominant protocatechuic acid (4.71 mg g-1), and GC-MS to analyze organic compounds in honey pollen. Specifically, 2-dodecanone was detected with a retention time of 7.34 min. The utilization of chromatographic tools in assessing honey samples for pollen identification provides a reliable and efficient method for determining their botanical origins, thereby contributing to the quality control and authentication of honey products.
Collapse
Affiliation(s)
- Saleh AlNadhari
- College of Agriculture, King Saud University, Riyadh, Saudi Arabia
| | | | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, University of Selcuk, Konya, Turkey
| | - Sokhib Islamov
- Department of Technology of Storage and Processing of Agricultural Products, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | - Afat O Mammadova
- Department of Botany and Plant Physiology, Baku State University, Baku, Azerbaijan
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Kuala Lumpur, Malaysia
| | | | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | | - Dashgin Ganbarov
- Doctor of Biological Sciences, Nakhchivan State University, Nakhchivan, Azerbaijan
| | - Ozal Beylerli
- entral Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Ömer Said Toker
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Jonida Biturku
- Faculty of Agriculture and Environment, Department of Agronomy Sciences, Agriculture University of Tirana, Tirana, Albania
| | - Ifrah Kiren
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Mithun FH, Bhuiyan MEJ, Hossain MG, Debnath C, Nazir KHMNH, Akter S. Protective potentials of polymyxin B and honey against bacterial lipopolysaccharide-induced endotoxemia in mice. J Adv Vet Anim Res 2024; 11:503-515. [PMID: 39101083 PMCID: PMC11296191 DOI: 10.5455/javar.2024.k800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The experiment aimed to determine the effects of lipopolysaccharide (LPS), polymyxin B, and honey on survival rates, hematological parameters, liver and kidney biomarkers, blood glucose levels, serum insulin levels, and histopathology of the liver, kidney, lungs, brain, and pancreas in LPS-challenged mice. Materials and Methods 50 male Swiss Albino mice (Mus musculus), aged 3 weeks, were randomly assigned into 5 groups (10 mice per group): Control group (A), LPS (2 mg/kg bwt/day IP in NS) treated group (B), polymyxin B (1.2 mg/kg bwt/day IM) pre-treated plus LPS (2 mg/kg bwt/day IP in NS) treated group (C), honey (10 gm/kg bwt/day PO) pre-treated plus LPS (2 mg/kg bwt/day IP in NS) treated group (D), both polymyxin B (1.2 mg/kg bwt/day IM) and honey (10 gm/kg bwt/day PO) pre-treated plus LPS (2 mg/kg bwt/day IP in NS) treated group (E). The LPS was administered intraperitoneally (IP) at 80 µg/mice/day, diluting in normal saline. After 16 weeks, the mice were sacrificed, and blood samples and organs (liver, kidney, lung, brain, and pancreas) were collected for laboratory tests. Results The results revealed that in LPS-treated mice, the mortality rate was the highest, and hemato-biochemical parameters were altered. Histopathological examination in the group treated with LPS showed disarrangement of hepatocytes, cellular infiltrations in the glomerulus, alveolar congestion in the lungs, several nerve fiber degenerations in the brain, and degenerative changes in pancreatic islets. The mortality rate and hemato-biochemical and histopathological changes were restored by the combined treatment of polymyxin B and honey. Conclusion LPS has detrimental effects on survival rate and hemato-biochemistry, which are lessened by taking honey and polymyxin B supplements.
Collapse
Affiliation(s)
- Ferdous Hasan Mithun
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Chirojit Debnath
- Department of Hepatology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Alaerjani WMA, Mohammed MEA. Impact of floral and geographical origins on honey quality parameters in Saudi Arabian regions. Sci Rep 2024; 14:8720. [PMID: 38622258 PMCID: PMC11018611 DOI: 10.1038/s41598-024-59359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
This article examined the effect of geographical (different climate conditions) and floral origins on some quality parameters of honey including the activity of diastase enzyme. Moreover, some non-quality parameters were investigated such as the pH, fructose, glucose, ratio of fructose/glucose and invertase. The honey samples were collected from Asir (cold climate) and Jazan (hot climate) regions at the southwestern part of Saudi Arabia. The geographical origin significantly affected the mean value moisture of the Acacia honey (p-value = 0.02), conductivity of the polyfloral honey (p-value = 0.03), sucrose of the Acacia honey (p-value = 0.02), diastase activity of the Acacia (p-value = 0.001), Ziziphus (p-value = 0.046) and polyfloral honey (p-value ≤ 0.001), fructose of the Acacia honey (p-value = 0.01), glucose of the Ziziphus honey (p-value = 0.03), fructose/ glucose ratio of the Ziziphus honey (p-value = 0.035), and invertase activity of the polyfloral honey (p-value ≤ 0.001). Regarding the effect of the floral origin of the honey from Asir region, the sucrose percentage of the Acacia honey was significantly more than that of the polyfloral honey (p- value = 0.003), the diastase activity of the Acacia honey was significantly more than its activity in the Ziziphus honey (p- value = 0.044), glucose percentage of the Ziziphus honey was significantly more the glucose percentage of the Acacia honey (p-value = 0.009) and the fructose/ glucose ratio of the Ziziphus honey was significantly more than that of the Acacia and polyforal honeys (p-value = 0.011 and p-value = 0.045, respectively). Concerning the significant effects of the floral origin on the quality parameters of the honey samples from Jazan region, the moisture of the Ziziphus honey was significantly increased when compared to the moisture of the Acacia honey (p-value = 0.038), the acidity of the polfloral honey was significantly more than the acidity of the Acacia honey (p-value = 0.049), the sum of fructose and glucose of the polyfloral honey was significantly increased compared to that of the Acacia honey (p-value = 0.015), the pH of the Ziziphus hiney was significantly more than the pH of the polyfloral honey (0.011) and the fructose of the polfloral honey was significantly more than that of the Acacia honey (p-value = 0.031). The effect of the geographical origin of the honey samples on their quality parameters depends on their floral origin and the effect of their floral origin differs according to their geographical origin. This article suggests considering collectively the geographical and floral origins effect when developing honey standards. However, the Codex standards for honey started considering this issue when it changed the standard concentration of HMF in honey from not more than 80-40 mg/Kg for honeys from cold climate and 80 mg/Kg for honeys from hot climates.
Collapse
|
4
|
Damto T, Birhanu T, Zewdu A. Physicochemical and antioxidant characterization of commercially available honey sample from Addis Ababa market, Ethiopia. Heliyon 2023; 9:e20830. [PMID: 37860501 PMCID: PMC10582368 DOI: 10.1016/j.heliyon.2023.e20830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
High-quality and genuine honey is crucial to provide consumers with natural honey and prevent any potential health issues. This study aimed to examine the quality of commercial honey available in the Addis Ababa market. A total of 30 honey samples were randomly collected from eight sub-cities of Addis Ababa city. Both High-Performance Liquid Chromatography (HPLC) and UV-Vis spectroscopic methods were used to determine 12 physicochemical and three antioxidant activity parameters in the honey samples according to internationally recognized standards. The findings of this study showed that the hydroxymethylfurfural (HMF), free acidity, and ash content of all commercial honey samples conformed to honey standards. However, except for honey samples collected from processors (19.48 ± 0.4 %) and retail outlets (20.49 ± 0.13 %), all other commercial honey samples failed to meet the moisture content criteria (≤21 %). Proline levels in honey samples taken from the street (67.1 ± 0.52 mg/kg) were also found to be below the required standard. The commercial honey samples contained fructose, glucose, sucrose, and maltose within a range of 33.85 ± 0.65 to 48.61 ± 0.51 %, 33.07 ± 1.58 to 44.3 ± 0.82 %, 0.91 ± 0.05 to 6.23 ± 2.49 %, and 0.51 ± 0.14 to 2.4 ± 0.44 %, respectively. Furthermore, honey samples from market areas showed good Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and antioxidant activity. Overall, the results revealed that all physicochemical parameters, except for proline, moisture, and sucrose content, complied with approved standards (Codex Alimentarius, European Union (EU), and Ethiopia Standard Agency (ESA). Accordingly, it is recommended that stakeholders receive regular training on how to manage honey quality issues and detect adulteration techniques to prevent contaminated honey from reaching the markets.
Collapse
Affiliation(s)
- Teferi Damto
- Holeta Bee Research Center, Oromia Agriculture Research Institute, Ethiopia
| | - Tarekegn Birhanu
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Ethiopia
| | - Ashagrie Zewdu
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Abera T, Alemu T. Physico-chemical characteristics of honey produced from northeastern Ethiopia. Heliyon 2023; 9:e13364. [PMID: 36816303 PMCID: PMC9932447 DOI: 10.1016/j.heliyon.2023.e13364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The research was carried out to determine the physico-chemical quality aspects of honey harvested from northeastern Ethiopia. Twenty four honey samples were collected from four locations and two hive types. R software was used to analyze the data. The average values were 14.47%, 0.28%, 28.22 meq/kg, 4.28, 48.48 mg/kg, 13.75 Goth scale, 2.56%, and 52.43% for moisture, ash, acidity, pH value, hydroxyl-methyl-furfural (HMF), diastase, sucrose, and reducing sugars, respectively. The honey of highlands (17.43%) was higher (P < 0.05) in moisture than lowland (14.48%) implicating highland lower in quality. Highland honey has a higher acidity (P < 0.05) probably due to soil nature. Honey from lowland, midland, and market were higher (P < 0.05) than highland in HMF. Diastase from traditional (16.32 Goth scale) was higher than frame hives (11.19 Goth scale), and sucrose from highland (3.88%) was higher (P < 0.05) than market (1.68%) although both were within the acceptable limits. Generally, the moisture, ash, acidity, diastase, sucrose, and pH contents of the honey were within the limits set for honey quality standards. However, in HMF and reducing sugars, it had not met the European standard. To make the honey exportable to international market, HMF and reducing sugars should be improved to the required level.
Collapse
Affiliation(s)
- Tilahun Abera
- Livestock and Fishery Development, South Wollo Zone Agriculture and Fishery Development Office, Dessie, Ethiopia
| | - Tewodros Alemu
- Department of Animal Science, Wollo University, Dessie, Ethiopia,Corresponding author.
| |
Collapse
|
6
|
Chemical Analysis and Quality Assessment of Honey Obtained from Different Sources. Processes (Basel) 2022. [DOI: 10.3390/pr10122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The purpose of this paper was to evaluate the quality of bee honey from different sources: beekeeper, local market and organic honey. Sensory analysis was performed and the water content, pH, acidity, protein content and total metal content (Cu, Cr, Mn, Co, Ni, Pb, Cd, Fe) were determined. The sensory analysis was carried out by a group of untrained panelists for quality assessment of honey. The metal content was determined by graphite atomic absorption spectrometry (GTAAS). Mineralization was carried out in a microwave digestion system, in a high-pressure polytetrafluoroethylene (PTFE) vessel, using a standard acid-digestion protocol. The results regarding the physico-chemical parameters showed that the honey samples were in accordance with the quality regulations for honey as a commercial product. The concentration of metals in the investigated honey samples varied in the order Cu > Cr > Pb > Fe > Ni > Mn > Co > Cd, the values being within the limits established by the EU Commission (No. 1881/2006). The variations observed in the evaluated parameters can be caused by the difference in plant species from which the honey comes, the harvesting period and the level of environmental pollutants. The Pearson correlations between the physico-chemical parameters and the metals indicate that water content (wc) is strongly negatively correlated with Cd and Ni, while pH is strongly positively correlated with Mn and Fe. Moreover, EC is strongly negatively correlated with Ni and Fe, and the Brix degrees are strongly positively correlated with Cd and Ni. Statistically significant positive correlation was found between Brix–Cd, Ni–Cd and Cu–Cr and a statistically significant negative correlation was detected between wc and Cd.
Collapse
|
7
|
Brar DS, Pant K, Krishna R, Kaur S, Rasane P, Nanda V, Saxena S, Gautam S. A comprehensive review on unethical honey: Validation by emerging techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
The Trend in Established Analytical Techniques in the Investigation of Physicochemical Properties and Various Constituents of Honey: a Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Quality Evaluation of Iranian Honey Collected from Khorasan Province, Iran. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:3827742. [PMID: 35190791 PMCID: PMC8858065 DOI: 10.1155/2022/3827742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Honey is a prominent nutritional and medicinal production of honey bees, originating from the nectar of flowers. The physicochemical properties of honey serve as indicators of its freshness and originality. The current survey aimed to assess the parameters of quality control, including hydroxymethylfurfuraldehyde [HMF], reducing sugars, fructose/glucose, sucrose, proline content, distaste activity, and free acidity, in 25 honey samples of different brands available in Khorasan Province, Iran. We used the methods suggested by the Association of Official Analytical Collaboration (AOAC, 1995), the International Honey Commission (IHC, 2009), and the Codex Alimentarius Honey Standards for the study. Statistical analysis was performed in Microsoft Excel. The obtained data indicated that eight out of 25 analyzed samples (32%) complied with all the requirements and were generally of acceptable quality. Meanwhile, 17 samples (68%) were unconfirmed by the Iranian Standard Organization (ISO), including 12 samples with a low level of diastase (<8 Schade) and high levels of HMF (>15 mg/kg), two samples with high sucrose levels, two samples with high proline, and one sample with high HMF. These findings suggested their inappropriate storage (time/temperature), heat treatment, and/or adulteration with industrial sugar. According to the results, the examined honey samples produced in Khorasan Province were not of acceptable quality, which highlights the importance of an effective regulatory framework to be evaluated and rectified periodically and accurately to maintain consumer rights, as well as public health.
Collapse
|
10
|
Khan KA, Ghramh HA, Ahmad Z, El-Niweiri MAA, Ahamed Mohammed ME. Queen cells acceptance rate and royal jelly production in worker honey bees of two Apis mellifera races. PLoS One 2021; 16:e0248593. [PMID: 33848292 PMCID: PMC8043409 DOI: 10.1371/journal.pone.0248593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Royal jelly (RJ) is an acidic yellowish-white secretion of worker honey bee glands, used as food material of worker bee larvae for the first three days and queen bee larvae for the entire life. It is commercially used in cosmetics and medicinal industry in various parts of the world. This study determined the queen cell acceptance rate and RJ production difference among Italian and Carniolan bee races. Furthermore, the effect of plastic cup cell priming media, diets and seasons were tested on the larval cell acceptance rate and RJ yield of both races. The results indicated that average queen cell acceptance rate was significantly (p<0.001) higher in Italian race (75.53 ± 1.41%) than Carniolan race (58.20 ± 1.30%). Similarly, mean RJ yield per colony significantly (p<0.001) differed between both bee races, which were 13.10 ± 0.42 g and 9.66 ± 0.43 g, in Italian and Carniolan races, respectively. Moreover, priming media, diets and seasons significantly (p<0.001) affected queen cell acceptance rate and RJ production of both bee races. This study would help breeders to select the bees with higher-level of queen cell acceptance rate and RJ production in the future.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- * E-mail:
| | | | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Arts and Sciences, Zahran al-Janobe, King Khalid University, Abha, Saudi Arabia
| | | | - Mohamed Elimam Ahamed Mohammed
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Khan KA, Ghramh HA, Ahmad Z, El-Niweiri MAA, Mohammed MEA. Honey bee ( Apis mellifera) preference towards micronutrients and their impact on bee colonies. Saudi J Biol Sci 2021; 28:3362-3366. [PMID: 34121873 PMCID: PMC8175997 DOI: 10.1016/j.sjbs.2021.02.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
Honey bees are important pollinators and take micronutrients from different natural floral resources and turbid water to adequately meet their nutritional requirements. But the role of micronutrients for honey bee health is not well understood. Here, the present study was conducted to determine honey bees' micronutrients preference in summer and winter seasons. Also, the impact of micronutrients on foraging behaviour and brood increase was studied in different honey bee colonies. The results elucidated that honey bees exhibited a strong preference for a salt solution compared to deionized water during the summer and winter seasons. However, there was a notable switch in salt preference between seasons. Overall, honey bees showed significantly more foraging activity, more pollen collection, and increased brood area after sodium consumption compared to other minerals in the summer season. Further, pollen collection and brood area were significantly higher after the use of potassium in the winter season. Thus, the food preference of honey bees is strongly linked with the seasons and the availability of the floral resources. Our data suggested that honey bees may seek specific nutrients during variation of the seasonal conditions.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Biology Department, Faculty of Arts and Sciences, Zahran al-Janobe, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mogbel A A El-Niweiri
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed Elimam Ahamed Mohammed
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Al-Ghamdi AA, Al-Ghamdi MS, Ahmed AM, Mohamed ASA, Shaker GH, Ansari MJ, Dorrah MA, Khan KA, Ayaad TH. Immune investigation of the honeybee Apis mellifera jemenitica broods: A step toward production of a bee-derived antibiotic against the American foulbrood. Saudi J Biol Sci 2020; 28:1528-1538. [PMID: 33732036 PMCID: PMC7938142 DOI: 10.1016/j.sjbs.2020.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 01/09/2023] Open
Abstract
Keeping honeybees healthy is essential, as bees are not only important for honey production but also cross-pollination of agricultural and horticultural crops; therefore, bees have a significant economic impact worldwide. Recently, the lethal disease, the American foulbrood (AFB), caused great losses of honeybee and decline of global apiculture. Recent studies have focused on using natural insect-derived antibiotics to overcome recently emerged AFB-resistance to conventional antibiotics. In support of these studies, here we investigate the possibility of producing bee-derived anti-AFB antibiotics from an indigenous honeybee, Apis mellifera jemenitica. The immune responses of the third instar stage were first induced against the standards Micrococcus luteus and Escherichia coli compared with the indigenous Paenibacillus larvae (ksuPL5). Data indicated a strong immune response against M. luteus, E. coli and P. larvae 24 h post-P. larvae-injection as revealed by the detection of lysozyme-like, cecropin-like and prophenoloxidase (PO) activities in the plasma of P. larvae-injected third instars. Nodulation activity against injected P. larvae as early as 4 h and peaking 48 h post-P. larvae injection were observed. Potentially active anti-P. larvae immune peptide fractions purified by high-performance liquid chromatography (HPLC) showed significant in vivo therapeutic effects on P. larvae-infected first instars. Mass spectrophotometric analysis and Orbitrap measurements of P. larvae-injected plasma indicated the expression of PO (Mr: 80 kDa), beta-1,3-glucan-binding protein (Mr: 52 kDa) and serine protease 44 isoform X1 (Mr: 46 kDa). This suggests that one or all of these immune peptides contribute to significant survivorship of P. larvae-infected broods, and could be a valuable clue in the search for honeybee-derived anti-AFB natural therapeutic agents. Further molecular characterization and description of the functional roles of these predicted antimicrobial peptides from both broods and adult honeybee may enrich the arsenal of insect-derived antibiotics of therapeutic purposes.
Collapse
Affiliation(s)
- Ahmad A Al-Ghamdi
- Engineer Abdullah Bugshan Chair for Bee Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mariam S Al-Ghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Biology, College of Science, Umm Al-Qura University, Saudi Arabia
| | - Ashraf M Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Abdel Salam A Mohamed
- Engineer Abdullah Bugshan Chair for Bee Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Plant Protection Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Ghada H Shaker
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, College of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohammad Javed Ansari
- Engineer Abdullah Bugshan Chair for Bee Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Botany, Hindu College Moradabad (M.J.P. Rohilkhand University Bareilly), India
| | - Moataza A Dorrah
- Department of Entomology, Faculty of Science, Cairo University, P.O. Box 12613, Orman, Giza, Egypt
| | - Khalid Ali Khan
- Engineer Abdullah Bugshan Chair for Bee Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Tahany H Ayaad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Entomology, Faculty of Science, Cairo University, P.O. Box 12613, Orman, Giza, Egypt
| |
Collapse
|
13
|
MALDI-MS analysis of disaccharide isomers using graphene oxide as MALDI matrix. Food Chem 2020; 342:128356. [PMID: 33071193 DOI: 10.1016/j.foodchem.2020.128356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
Disaccharides are sugars composed of two monosaccharides joined by a glycosidic linkage. The specific properties of a disaccharide depend on the type of the glycosidic linkage and the identity of the two component monosaccharides. In this work, seven disaccharide isomers (gentiobiose, isomaltose, melibiose, lactose, maltose, cellobiose, and sucrose) were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using a graphene oxide matrix. Each disaccharide was identified by its unique cleavage pattern. To determine the feasibility of quantitative analyses based on specific fragment patterns, mixtures of sucrose with cellobiose or maltose were prepared at different ratios and analyzed by MALDI-MS, where a strong linear correlation was observed between the relative peak intensity of the sucrose fragment peak at m/z 185 and the amount of sucrose in the mixture. The calibration curve was successfully applied to obtain the relative amount of maltose and sucrose in four different honey samples.
Collapse
|