1
|
Hossain KM, Khan U, Mahbubur Rahman S, Khan MS. Potential antimicrobial and fruit juice clarification activity of amylase enzyme from Bacillus strains. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00861. [PMID: 39435337 PMCID: PMC11491680 DOI: 10.1016/j.btre.2024.e00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
The hydrolytic enzyme, amylase possesses wide industrial applications and its production from bacterial sources by submerged fermentation is much simplified and economical. The research aimed to characterize amylase-producing bacteria and evaluate their potential for amylase activity regarding antimicrobial and fruit juice clarification. In current study, Bacillus licheniformis, Bacillus amyloliquifaciens, Bacillus cereus, Bacillus subtilis and Bacillus paramycoides was identified by 16S rRNA sequencing. After submerged fermentation, amylase activity of bacteria was measured by 3, 5-dinitro salicylic acid (DNS) assay. A substantial amount of amylase (423.47 mg/ml) in crude extract was measured by Bradford protein assay. Later, ammonium sulfate (80 %) precipitated partially purified amylase showed 1.6 times enhanced amylase activity (1484.94 U/ml) compared to crude amylase (973.23 U/ml). For highest amylase production, 72 h of optimum fermentation period was recorded at pH 7 with 2 % starch as substrate. Potent thermophilic amylase activity was observed at 65 °C. In apple juice clarification activity of amylase, turbidity of juice was reduced to 54.18 %. Potential antimicrobial property of amylase was detected with largest zone of inhibition against Escherichia coli ATCC 25922 (22.36 mm) and Mucor sp. ATCC 48559 (22.45 mm). Considering promising amylase properties, amylase-producing Bacillus strains from rice mill soil can be fermented for large scale amylase production providing application for industrial purposes including fruit juice clarification and antimicrobial activities. It will also overthrow the requirement of employing expensive and harmful chemicals in fruit juice clarification and combating pathogens.
Collapse
Affiliation(s)
- Khondoker Moazzem Hossain
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Umama Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore-7408, Bangladesh
| | - S.M. Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Md. Salauddin Khan
- Statistics Discipline, Science, Engineering and Technology School, Khulna University, Khulna-9208, Bangladesh
| |
Collapse
|
2
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
3
|
Sodhozai AR, Bibi S, Rabia M, Jadoon M, Akhtar H, Ali N. From growth inhibition to ultrastructural changes: Toxicological assessment of lambda cyhalothrin and fosetyl aluminium against Bacillus subtilis and Pseudomonas aeruginosa. ENVIRONMENTAL RESEARCH 2024; 252:118958. [PMID: 38640987 DOI: 10.1016/j.envres.2024.118958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In modern agricultural practices, agrochemicals and pesticides play an important role in protecting the crops from pests and elevating agricultural productivity. This strategic utilization is essential to meet global food demand due to the relentless growth of the world's population. However, the indiscriminate application of these substances may result in environmental hazards and directly affect the soil microorganisms and crop production. Considering this, an in vitro study was carried out to evaluate the pesticides' effects i.e. lambda cyhalothrin (insecticide) and fosetyl aluminum (fungicide) at lower, recommended, and higher doses on growth behavior, enzymatic profile, total soluble protein production, and lipid peroxidation of bacterial specimens (Pseudomonas aeruginosa and Bacillus subtilis). The experimental findings demonstrated a concentration-dependent decrease in growth of both tested bacteria, when exposed to fosetyl aluminium concentrations exceeding the recommended dose. This decline was statistically significant (p < 0.000). However, lambda cyhalothrin at three times of recommended dose induces 10% increase in growth of Pseudomonas aeruginosa (P. aeruginosa) and 76.8% decrease in growth of Bacillus subtilis (B. subtilis) respectively as compared to control. These results showed the stimulatory effect of lambda cyhalothrin on P. aeruginosa and inhibitory effect on B. subtilis. Pesticides induced notable alterations in biomarker enzymatic assays and other parameters related to oxidative stress among bacterial strains, resulting in increased oxidative stress and membrane permeability. Generally, the maximum toxicity of both (P. aeruginosa and B. subtilis) was shown by fosetyl aluminium, at three times of recommended dose. Fosetyl aluminium induced morphological changes like cellular cracking, reduced viability, aberrant margins and more damage in both bacterial strains as compared to lambda cyhalothrin when observed under scanning electron microscope (SEM). Conclusively the, present study provide an insights into a mechanistic approach of pyrethroid insecticide and phosphonite fungicide induced cellular toxicity towards bacteria.
Collapse
Affiliation(s)
- Asma Rabbani Sodhozai
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Safia Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Mahwish Rabia
- Department of Statistics, Faculty of Natural Sciences, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Muneeba Jadoon
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Hafsah Akhtar
- Department of Microbiology, Comsat University Lahore, Pakistan.
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Zhang D, Liu L, Chen BS. Marine-Derived Fungi as a Valuable Resource for Amylases Activity Screening. J Fungi (Basel) 2023; 9:736. [PMID: 37504725 PMCID: PMC10381586 DOI: 10.3390/jof9070736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Marine microbial enzymes including amylases are important in different industrial production due to their properties and applications. This study was focused on the screening of marine-derived fungi for amylase activities. First, we isolated a number of fungi from the sediments of the South China Sea. By the method of dish screening (in vitro), we subsequently obtained a series of amylase-producing fungal strains. The cell-lysate activities of amylases produced by marine fungi toward starch hydrolysis were achieved with the dinitrosalyicylic acid (DNS) method. In addition, the effect of pH and temperature on amylase activities, including thermal and pH stability were discussed. Results showed that out of the 57 isolates with amylase-producing activities, fungi Aspergillus flavus 9261 was found to produce amylase with the best activity of 10.7482 U/mg (wet mycelia). The amylase of Aspergillus flavus 9261 exhibited remarkable thermostability and pH stability with no activity loss after incubation at 50 °C and pH 5.0 for 1 h, respectively. The results provide advances in discovering enzymes from marine-derived fungi and their biotechnology relevance.
Collapse
Affiliation(s)
- Di Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519080, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
5
|
Masi C, Tebiso A, Selva Kumar K. Isolation and characterization of potential multiple extracellular enzyme-producing bacteria from waste dumping area in Addis Ababa. Heliyon 2023; 9:e12645. [PMID: 36793964 PMCID: PMC9922826 DOI: 10.1016/j.heliyon.2022.e12645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Extremozymes are innovative and robust biocatalysts produced by various microorganisms from harsh environments. As thermophilic organisms can only develop in a few places, studying them in geothermal environments has provided new insights into the origins and evolution of early life and access to significant bio-resources with potential biotechnology applications. The work aimed to isolate and identify likely multiple extracellular enzyme-producing thermophilic bacteria from an Addis Ababa landfill (Qoshe). The streaking approach was used to purify 102 isolates acquired by serial dilution and spread plate method. The isolates were morphologically and biochemically characterized. Thirty-five cellulases, 22 amylase, 17 protease, and nine lipase-producing bacteria were identified using primary screening methods. Further secondary screening using Strain safety evaluation; two bacterial strains (TQ11 and TQ46) were identified. Based on morphological and biochemical tests, they were found to be gram-positive and rod-shaped. Furthermore, molecular identification and phylogenic analysis of selected promising isolates confirmed the identity of the isolates, Paenibacillus dendritiformis (TQ11) and Anoxybacillus flavithermus (TQ46). The results indicated that, multiple extracellular enzyme-producing thermophilic bacteria isolated from a waste dumping area in Addis Ababa offer useful features for environmental sustainability in a wide range of industrial applications due to their biodegradability and specialized stability under extreme conditions, increased raw material utilization, and decreased waste.
Collapse
Affiliation(s)
- Chandran Masi
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia,Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia,Corresponding author. Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia.
| | - Abel Tebiso
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - K.V. Selva Kumar
- School of Chemical and Bioengineering, Dire Dawa University Institute of Technology, Dire Dawa, Ethiopia
| |
Collapse
|
6
|
Activity-Based Screening of Soil Samples from Nyingchi, Tibet, for Amylase-Producing Bacteria and Other Multifunctional Enzyme Capacities. Int J Microbiol 2022; 2022:2401766. [DOI: 10.1155/2022/2401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the interest in Tibetan soil as a promising source of functional enzymes with potential biotechnological applications, few studies have considered the screening and identification of amylase producing bacteria from Tibetan soil. Amylase has many applications in the food and feed industries, textile and biofuel production, and biomedical engineering. The area of amylase with specific properties is attracting growing attention because of its better application to various industrial conditions. This study aims to screen and identify amylase-producing strains from soil samples collected in Nyingchi, Tibet, and then explore whether the bacterial isolates are superior for unique enzymes. In this paper, a total of 127 amylase producing bacteria were isolated by activity-based screening of six Tibetan soil samples. The 16S rRNA gene survey then identified four major phyla, namely, firmicutes, bacteroidetes, proteobacteria, and actinobacteria, which were differentiated into twelve genera with a dominance of Bacillus (67.72%), followed by Pseudomonas (8.66%). Microbial diversity analysis revealed that the amylase-producing bacterial community of the Kadinggou forest soil sample showed the best variety (the Simpson index was 0.69 and the Shannon index was 0.85). The amylase activity assay of the bacterial isolates showed a mean of 0.66 U/mL at 28°C and pH 5.2. Based on the effect of temperatures and pHs on amylase activity, several bacterial isolates can produce thermophilic (50°C), psychrophilic (10°C), acidophilic (pH 4.2), and alkaliphilic (pH 10.2) amylases. Furthermore, four bacterial isolates were screened for amylase, protease, and esterase activities, which indicated multifunctional enzyme capacities. The present study is expected to contribute to our understanding of Tibetan microbial resources and their potential for scientific research and industrial applications.
Collapse
|
7
|
Soundararajan D, Natarajan L, Trilokesh C, Harish B, Ameen F, Amirul Islam M, Uppuluri KB, Anbazhagan V. Isolation of exopolysaccharide, galactan from marine Vibrio sp. BPM 19 to template the synthesis of antimicrobial platinum nanocomposite. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Wu X, Cai W, Zhu P, Peng Z, Zheng T, Li D, Li J, Zhou G, Zhang J, Du G. Function-driven design of Bacillus kochii and Filobasidium magnum co-culture to improve quality of flue-cured tobacco. Front Microbiol 2022; 13:1024005. [PMID: 36875537 PMCID: PMC9978371 DOI: 10.3389/fmicb.2022.1024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 02/18/2023] Open
Abstract
Flue-cured tobacco (FCT) is an economical raw material whose quality affects the quality and cost of the derived product. However, the time-consuming and inefficient spontaneous aging is the primary process for improving the FCT quality in the industry. In this study, a function-driven co-culture with functional microorganisms was built in response to the quality-driven need for less irritation and more aroma in FCT. The previous study has found that Bacillus kochii SC could degrade starch and protein to reduce tobacco irritation and off-flavors. The Filobasidium magnum F7 with high lipoxygenase activity was screened out for degrading higher fatty acid esters and terpenoids to promote the aroma and flavor of FCT. Co-cultivation with strain SC and F7 obtained better quality improvement than mono-culture at an initial inoculation ratio of 1:3 for 2 days, representing a significant breakthrough in efficiency and a reduction in production costs compared to the more than 2 years required for the spontaneous aging process. Through the analysis of microbial diversity, predicted flora functions, enzyme activities and volatile compositions within the mono- and co-cultivation, our study showed the formation of a function-driven co-culture between two strains through functional division of labor and nutritional feeding. Herein, the function-driven co-culture via bioaugmentation will become an increasingly implemented approach for the tobacco industry.
Collapse
Affiliation(s)
- Xinying Wu
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wen Cai
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Pengcheng Zhu
- School of Biotechnology, Jiangnan University, Wuxi, China.,Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Zheng Peng
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Tianfei Zheng
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Dongliang Li
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guanyu Zhou
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Wu X, Zhu P, Li D, Zheng T, Cai W, Li J, Zhang B, Zhu B, Zhang J, Du G. Bioaugmentation of Bacillus amyloliquefaciens-Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Arch Microbiol 2021; 203:5723-5733. [PMID: 34480626 DOI: 10.1007/s00203-021-02556-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
Flue-cured tobacco (FCT) with irritating and undesirable flavor must be aged. However, the spontaneous aging usually takes a very long time for the low efficiency. Bioaugmentation with functional strains is a promising method to reduce aging time and improve sensory quality. To eliminate the adverse effect of excessive starch or protein content on the FCT quality, we used the flow cytometry to sort Bacillus amyloliquefaciens LB with high alpha-amylase and Bacillus kochii SC with high neutral protease from the FCT microflora. The mono, co-culture of strains was performed the solid-state fermentation with FCT. Bacillus amyloliquefaciens monoculture for 2 days and Bacillus kochii monoculture for 2.5 days achieved the optimum quality. B. amyloliquefaciens-B. kochii co-culture at a ratio of 3:1 for 2 days of fermentation showed a more comprehensive quality enhancement and higher functional enzyme activity than mono-cultivation. Through OPLS-DA model (orthogonal partial least-squares-discriminant analyzes), there were 38 differential compounds between bioaugmentation samples. In co-cultivation, most of Maillard reaction products and terpenoid metabolites were at a higher level than other samples, which promoted an increase in aroma, softness and a decrease in irritation. This result validated the hypothesis of quality improvement via the co-culture. In our study, we presented a promising bioaugmentation technique for changing the sensory attributes of FCT in a short aging time.
Collapse
Affiliation(s)
- Xinying Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Pengcheng Zhu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, Chengdu, 610000, China
| | - Dongliang Li
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, Chengdu, 610000, China
| | - Tianfei Zheng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wen Cai
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, Chengdu, 610000, China
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Baoyu Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Beibei Zhu
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, Chengdu, 610000, China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|