1
|
Kumrungsee N, Nobsathian S, Chumworathayee W, Phankaen P, Dunkhunthod B, Koul O, Saiyaitong C, Bullangpoti V. Effect of isolated compounds from Combretum trifoliatum on toxicity and detoxification enzymes in Nilaparvata lugens. Sci Rep 2025; 15:27. [PMID: 39747314 PMCID: PMC11696173 DOI: 10.1038/s41598-024-83351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
The brown planthopper (BPH) Nilaparvata lugens (Stål) is a major insect pest of Oryza sativa that causes crop yield loss in tropical regions, including Thailand. In this study, the crude ethanolic extract of the leaves and branches of Combretum trifoliatum , its active isolated components, apigenin and camphor, and Finopril were tested for their ability to control the first to fifth instars of N. lugens. The C. trifoliatum crude extract and both allelochemicals showed insecticide potential (24 h-LC50 ~ 8.83-95.96 mg/L against each instar for crude extract), and their toxicity depended on the time of exposure. Camphor showed the higher efficacy (LD50 ~ 4.43 mg/L) and not different compared to Finopril. All plant compounds tested reduced carboxylesterase (CE) and glutathione-s-transferase (GST) activities. Camphor caused the greatest decreases in CE and GST activities after exposure, whereas apigenin induced a slight change in acetylcholinesterase activity. The results of the present study suggest that C. trifoliatum extract can be used as an insecticide to manage N. lugens populations.
Collapse
Affiliation(s)
- Nutchaya Kumrungsee
- Biology Department, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani, 12110, Thailand
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Saksit Nobsathian
- Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Worakawee Chumworathayee
- Biology Department, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani, 12110, Thailand
| | - Poonnanan Phankaen
- Valaya Alongkorn Rajabhat University under the Royal Patronage Sa kaeo, Valaya Alongkorn Rajabhat University Under the Royal Patronage, Pathum Thani, 13180, Thailand
| | - Benjawan Dunkhunthod
- Thai Traditional Medicine Program, Faculty of Nursing and Allied Health Sciences, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand
| | - Opender Koul
- Insect Biopesticide Research Centre, 30 Parkash Nagar, Jalandhar, 144003, India
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Chatwadee Saiyaitong
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Vasakorn Bullangpoti
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Pérez-Valera O, Torres-Martínez R, Nieto-Camacho A, Valencia I, Javier Espinosa-García F, Delgado G. Larvicidal Activity against Spodoptera frugiperda of some Constituents from two Diospyros Species. In silico Pesticide-likeness Properties, Acetylcholinesterase Activity and Molecular Docking. Chem Biodivers 2024; 21:e202301871. [PMID: 38320175 DOI: 10.1002/cbdv.202301871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
This report informs for the first time the chemical constituents of Diospyros xolocotzii and Diospyros digyna, the pesticidal and the acetylcholinesterase (AChE) inhibition potential of some compounds calculated by in silico approaches, the larvicidal activity against Spodoptera frugiperda of available compounds, the AChE inhibition of selected compounds, and the results of the molecular docking of the most active ones with this receptor. From the aerial parts of D. xolocotzii were isolated pentacyclic triterpenes (1-4, 6, 10, 11-13), phytosterols (15-17), and isodiospyrin (18), whereas the analysis of aerial parts of D. digyna conducted to the isolation of pentacyclic triterpenes (4, 5, 7-9, 11-14), (4S)-shinanolone (19), and scopoletin (20). For comparison purposes, origanal (21) was chemically prepared from 11. The in silico analysis showed that the tested compounds have pesticide potential. The larvicidal activities of 11>13>12 indicated that the increase of the oxidation degree at C-28 increases their bioactivity. Compounds 11 and 21 presented the higher inhibition in the acetylcholinesterase assay, and the higher binding energies, and for the interactionswith AChE by molecular docking. Both Diospyros species are sources of triterpenes with pesticidal potential and the molecular changes in lupane triterpenes correlate with the observed bioactivity and molecular docking.
Collapse
Affiliation(s)
- Olivia Pérez-Valera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Rafael Torres-Martínez
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro, No 8701., Col. Ex-Hacienda de San José de la Huerta 58190, Michoacán, México
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Israel Valencia
- Laboratorio de Fitoquímica, Unidad de Biología Tecnológica y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No 1. Col. Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México
| | - Francisco Javier Espinosa-García
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro, No 8701., Col. Ex-Hacienda de San José de la Huerta 58190, Michoacán, México
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
3
|
Wang C, Yao X, Li X, Wang Q, Jiang N, Hu X, Lv H, Mu B, Wang J. Fosthiazate, a soil-applied nematicide, induces oxidative stress, neurotoxicity and transcriptome aberrations in earthworm (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132865. [PMID: 39491983 DOI: 10.1016/j.jhazmat.2023.132865] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Fosthiazate is a widely used organophosphorus nematicide that resides in the soil and controls soil root-knot nematodes. However, whether it has toxic effects on non-target soil organisms such as earthworms is unclear. Therefore, in this study, a 28-day experiment of fosthiazate exposure was conducted using the Eisenia fetida as the model organism. The results showed that fosthiazate stress caused excessive production of reactive oxygen species (ROS), increased the levels of malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG), and decreased the activities of superoxide dismutase (SOD) and catalase (CAT), suggesting that fosthiazate induced oxidative stress and DNA damage in E. fetida. Acetylcholinesterase (AChE) activity was significantly reduced, and the expression of its related functional genes was also altered, demonstrating that fosthiazate damaged the nervous system of E. fetida, which was further confirmed by AlphaFold2 modeling and molecular docking simulations. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that fosthiazate exposure may induce apoptosis, inflammation, and viral infection in E. fetida, which adversely affect the organism. This study provides reference data for the ecotoxicity of fosthiazate.
Collapse
Affiliation(s)
- Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xue Hu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
4
|
Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, Imran M, Assiri MA, Fernández-Grandon GM, Desneux N, Rehman M, Fahad S, Lu Y. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1746-1762. [PMID: 34709552 DOI: 10.1007/s11356-021-16974-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Hubei, People's Republic of China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Nicolas Desneux
- UMR ISA, Université Côte d'Azur, INRAE, CNRS, 06000, Nice, France
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|