1
|
Lunić T, Petković M, Rakić M, Lađarević J, Repac J, Nedeljković BB, Božić B. Anti-neuroinflammatory potential of hydroxybenzoic ester derivatives: In silico insight and in vitro validation. J Mol Struct 2025; 1321:139804. [DOI: 10.1016/j.molstruc.2024.139804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Liu N, Liang H, Hong Y, Lu X, Jin X, Li Y, Tang S, Li Y, Cao W. Gallic acid pretreatment mitigates parathyroid ischemia-reperfusion injury through signaling pathway modulation. Sci Rep 2024; 14:12971. [PMID: 38839854 PMCID: PMC11153493 DOI: 10.1038/s41598-024-63470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.
Collapse
Affiliation(s)
- Nianqiu Liu
- Departments of Breast Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Hongmin Liang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuan Hong
- Departments of Laboratory, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xiaokai Lu
- Departments of Ultrasound, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xin Jin
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuting Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Shiying Tang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yihang Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Weihan Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China.
| |
Collapse
|
4
|
Mohamed EK, Hafez DM. Gallic acid and metformin co-administration reduce oxidative stress, apoptosis and inflammation via Fas/caspase-3 and NF-κB signaling pathways in thioacetamide-induced acute hepatic encephalopathy in rats. BMC Complement Med Ther 2023; 23:265. [PMID: 37491245 PMCID: PMC10367384 DOI: 10.1186/s12906-023-04067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a consequence of chronic or acute liver diseases. This study evaluates the combined effect of gallic acid (GA), and metformin (Met) on the liver and brain damage associated with HE. METHODS Acute HE was induced by a single dose of thioacetamide (TAA) (300 mg/kg) as an I.P. injection. Treated groups received GA group (100 mg/kg/day, p.o), Met (200 mg/kg/day, p.o), or their combination for 25 consecutive days before TAA injection. RESULTS The administration of TAA induced various biochemical and histopathological alterations. In contrast, treatment with GA either alone or combined with Met resulted in improved liver functions by the significant reduction in serum ALT, AST, and ALP activities, and ammonia levels. Inflammatory mediators; TNF-α, IL-6, and NFkβ levels were decreased by these treatments as well as apoptotic cascade via down-regulation of FAS and caspase-3 (CASP-3) expression in hepatic tissues. Furthermore, GA and Met either alone or combined protected the liver and brain tissues from damage by increased glutathione concentration while decreasing malondialdehyde. In addition, it was accompanied by the improvement of the brain neurotransmitter profile via the restoration of norepinephrine, dopamine, and serotonin levels. Based on our data, this is the first study to report a novel combined hepatoprotective and cognitive enhancing effect of GA and Met against TAA-induced acute liver and brain injury. CONCLUSION GA and Met combination resulted in a prominent improvement in HE complications, relative to monotherapy. Both agents potentiated the antioxidant, anti-inflammatory, and anti-apoptotic effects of each other.
Collapse
Affiliation(s)
- Ehsan Khedre Mohamed
- Biochemistry department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt.
| | - Dawlat Mohamed Hafez
- Histology department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
5
|
Dhir N, Jain A, Sharma AR, Sharma S, Mahendru D, Patial A, Malik D, Prakash A, Attri SV, Bhattacharyya S, Das Radotra B, Medhi B. Rat BM-MSCs secretome alone and in combination with stiripentol and ISRIB, ameliorated microglial activation and apoptosis in experimental stroke. Behav Brain Res 2023; 449:114471. [PMID: 37146724 DOI: 10.1016/j.bbr.2023.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Stroke, a devastating neurological emergency, is the leading cause of worldwide mortality and functional disability. Combining novel neuroprotective drugs offers a way to improve the stroke intervention outcomes. In the present era, the combination therapy has been proposed as a plausible strategy to target multiple mechanisms and enhance the treatment efficacy to rescue stroke induced behavioral abnormalities and neuropathological damage. In the current study, we have investigated the neuroprotective effect of stiripentol (STP) and trans integrated stress response inhibitor (ISRIB) alone and in combination with rat bone marrow derived mesenchymal stem cells (BM-MSCs) secretome in an experimental model of stroke. MATERIALS & METHODS Stroke was induced in male Wistar rats (n=92) by temporary middle cerebral artery occlusion (MCAO). Three investigational agents were selected including STP (350mg/kg; i.p.), trans ISRIB (2.5mg/kg; i.p.) and rat BM-MSCs secretome (100µg/kg; i.v). Treatment was administered at 3 hrs post MCAO, in four doses with a 12 hrs interval. Post MCAO, neurological deficits, brain infarct, brain edema, BBB permeability, motor functional and memory deficits were assessed. Molecular parameters: oxidative stress, pro inflammatory cytokines, synaptic protein markers, apoptotic protein markers and histopathological damage were assessed. RESULTS STP and trans ISRIB, alone and in combination with rat BM-MSCs secretome, significantly improved neurological, motor function and memory deficits along with significant reduction in pyknotic neurons in the brain of post MCAO rats. These results were correlating with significant reduction in pro-inflammatory cytokines, microglial activation and apoptotic markers in the brain of drug treated post MCAO rats. CONCLUSION STP and trans ISRIB, alone and in combination with rat BM-MSCs secretome, might be considered as potential neuroprotective agents in the acute ischemic stroke (AIS) management. DATA AVAILABILITY STATEMENT Data will be made available on reasonable request.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Sunil Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Dhruv Mahendru
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Ajay Patial
- Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Deepti Malik
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Savita Verma Attri
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bishan Das Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
6
|
Narra SS, Rondeau P, Fernezelian D, Gence L, Ghaddar B, Bourdon E, Lefebvre d'Hellencourt C, Rastegar S, Diotel N. Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair. J Comp Neurol 2022; 531:238-255. [PMID: 36282721 DOI: 10.1002/cne.25421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Microglia are macrophage-like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L-plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L-plastin cells were still abundantly present at 5 days post-lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA-sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2 O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Sai Sandhya Narra
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems‐Biological Information Processing (IBCS‐BIP), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| |
Collapse
|
7
|
Rodríguez-Rico D, Sáenz-Esqueda MDLÁ, Meza-Velázquez JA, Martínez-García JJ, Quezada-Rivera JJ, Umaña MM, Minjares-Fuentes R. High-Intensity Ultrasound Processing Enhances the Bioactive Compounds, Antioxidant Capacity and Microbiological Quality of Melon ( Cucumis melo) Juice. Foods 2022; 11:foods11172648. [PMID: 36076833 PMCID: PMC9455593 DOI: 10.3390/foods11172648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The bioactive compounds, antioxidant capacity and microbiological quality of melon juice processed by high-intensity ultrasound (HIUS) were studied. Melon juice was processed at two ultrasound intensities (27 and 52 W/cm2) for two different processing times (10 and 30 min) using two duty cycles (30 and 75%). Unprocessed juice was taken as a control. Total carotenoids and total phenolic compounds (TPC) were the bioactive compounds analyzed while the antioxidant capacity was determined by DPPH, ABTS and FRAP assays. The microbiological quality was tested by counting the aerobic and coliforms count as well as molds and yeasts. Total carotenoids increased by up to 42% while TPC decreased by 33% as a consequence of HIUS processing regarding control juice (carotenoids: 23 μg/g, TPC: 1.1 mg GAE/g), gallic acid and syringic acid being the only phenolic compounds identified. The antioxidant capacity of melon juice was enhanced by HIUS, achieving values of 45% and 20% of DPPH and ABTS inhibition, respectively, while >120 mg TE/100 g was determined by FRAP assay. Further, the microbial load of melon juice was significantly reduced by HIUS processing, coliforms and molds being the most sensitive. Thus, the HIUS could be an excellent alternative supportive the deep-processing of melon products.
Collapse
Affiliation(s)
- Daniel Rodríguez-Rico
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | | | - Juan José Martínez-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | - Mónica M. Umaña
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Rafael Minjares-Fuentes
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
- Correspondence:
| |
Collapse
|
8
|
Gallic Acid Enhances the Anti-Cancer Effect of Temozolomide in Human Glioma Cell Line via Inhibition of Akt and p38-MAPK Pathway. Processes (Basel) 2022. [DOI: 10.3390/pr10030448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Temozolomide (TMZ), an oral alkylating agent, is used to treat malignant gliomas and other difficult-to-treat tumors. TMZ can enter the cerebrospinal fluid p.o. (per os) and does not need hepatic metabolism for activation of its use as a standard chemotherapeutic regimen after surgical resection of malignant glioma of the brain. However, the prognosis remains poor for most patients, and the survival rate is still unsatisfactory. Gallic acid (Ga) is a secondary metabolite existent in numerous plants. Ga shows various bioactivities, including antioxidant, anti-inflammatory, anticancer and antimicrobial effects. In this study, the latent enhanced anti-cancer efficacy of Ga in TMZ-treated U87MG cells (a human glioma line) was evaluated. (2) Methods: The U87MG cell line was cultured for 24 h. The cells were incubated with Ga alone, TMZ alone, or their combination for various time points. Cell viability and the drug combination index were evaluated by an XTT-based analysis and isobologram analysis, respectively. DNA destruction and intracellular reactive oxygen species (ROS) generation were analyzed by flow cytometer. The expression of various proteins was assessed via Western blotting. (3) Results: Compared with the action of TMZ alone or Ga alone, TMZ/Ga combination augmented the inhibition of cellular viability and apoptotic level in the U87MG glioma cell line. This enhanced anti-cancer effect correlated with the decreased expression of Bcl-2 and p-Akt, and corresponded with the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. In addition, Ga suppressed the TMZ-promoted ROS generation. (4) Conclusions: Ga can augment the anti-cancer effect of TMZ via the repression of Bcl-2 expression and Akt activation and the enhancement of the p38 MAPK pathway. Our results offer a novel probable approach for the medical treatment of malignant glioma.
Collapse
|