1
|
Lei Y, Dong R, Sun C, Hu Y, Yan Y, Song G, Wang Y. The Role of CXCL13 in GC-1 Cell Cycle Arrest Induced by Titanium Dioxide Nanoparticles Through JAK2/STAT3 Signaling Pathway. J Appl Toxicol 2025. [PMID: 39777719 DOI: 10.1002/jat.4747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can induce the cell cycle arrest in spermatogonia, and the JAK2/STAT3 signaling pathway plays a pivotal role in cell cycle progression, but the specific upstream regulatory mechanisms are not completely clarified. The purpose of this study was to investigate whether CXCL13 regulated the JAK2/STAT3 signaling pathway to participate in cell cycle arrest after mouse spermatogonia cell line (GC-1) exposure to TiO2 NPs. The GC-1 cells were treated with TiO2 NPs at different concentrations (0, 10, 20, 30, and 40 μg/mL) for 24 h to detect cell viability, cell cycle distribution, CXCL13 protein, JAK2/STAT3 pathway-related proteins, and cell cycle-related proteins. The CXCL13 recombinant protein was used to verify the role of CXCL13 in cell cycle and JAK2/STAT3 signaling pathway. TiO2 NPs inhibited cell viability; regulated cell cycle-related proteins including remarkably decreased Cyclin D1, CDK4, Cyclin E1, and CDK2 as well as increased p21; and induced cell cycle arrest at the G0/G1 phase. TiO2 NPs inhibited the levels of CXCL13 protein and weakened the activation of the JAK2/STAT3 signaling pathway by reducing the levels of p-JAK2/JAK2 and p-STAT3/STAT3 proteins. Furthermore, CXCL13 mitigated the suppression of the JAK2/STAT3 signaling pathway and the G0/G1 cell cycle arrest caused by TiO2 NPs. Taken together, TiO2 NPs downregulated the expression of CXCL13 to inhibit the activation of downstream JAK2/STAT3 signaling pathway, eventually inducing cell cycle arrest at the G0/G1 phase. These results provide a novel insight for complemented understanding of the mechanisms of TiO2 NPs-induced cell cycle arrest in GC-1 cells.
Collapse
Affiliation(s)
- Yuzhu Lei
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ruoyun Dong
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Chenhao Sun
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
2
|
Chen H, Wu Y, Wang J, Li Y, Chen Y, Wang X, Lv H, Liu X. Tilianin enhances the antitumor effect of sufentanil on non-small cell lung cancer. J Biochem Mol Toxicol 2024; 38:e23761. [PMID: 38952040 DOI: 10.1002/jbt.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 μM, and the IC50 of Tilianin for H1299 cells was 44.6 μM. Functionally, 0.5 nM sufentanil and 10 μM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 μM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 μM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 μM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.
Collapse
Affiliation(s)
- Huixia Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yulin Wu
- Department of Anesthesia Operation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jiazheng Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yike Li
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yongxue Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinbo Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Hangyu Lv
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinyan Liu
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| |
Collapse
|
3
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
4
|
Darwish NM, Elshaer MMA, Almutairi SM, Chen TW, Mohamed MO, Ghaly WBA, Rasheed RA. Omega-3 Polyunsaturated Fatty Acids Provoke Apoptosis in Hepatocellular Carcinoma through Knocking Down the STAT3 Activated Signaling Pathway: In Vivo and In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093032. [PMID: 35566382 PMCID: PMC9103886 DOI: 10.3390/molecules27093032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common type of liver cancer and is a leading cause of death worldwide. Signal transducer and activator of transcription 3 (STAT3) is involved in HCC progression, migration, and suppression of apoptosis. This study investigates the apoptotic effect of the dietary antioxidant (n-3 PUFAs) on HepG2 cells and analyzes the underlying molecular mechanisms of this effect both in vivo and in vitro. In vivo study: Seventy-five adult male albino rats were divided into three groups (n = 25): Group I (control): 0.9% normal saline, intraperitoneal. Group II: N-Nitrosodiethylamine (200 mg/kg b.wt) intraperitoneal, followed by phenobarbital 0.05% in drinking water. Group III: as group II followed by n-3 PUFAs intubation (400 mg/kg/day). In vivo study: liver specimens for biochemical, histopathological, and immunohistochemical examination. In vitro study: MTT assay, cell morphology, PCR, Western blot, and immunohistochemical analysis. n-3 PUFAs significantly improved the histopathologic features of HCC and decreased the expression of anti-apoptotic proteins. Further, HepG2 cells proliferation was suppressed through inhibition of the STAT3 signaling pathway, cyclin D1, and Bcl-2 activity. Here we report that n-3 PUFAs may be an ideal cancer chemo-preventive candidate by targeting STAT3 signaling, which is involved in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Noura M. Darwish
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Ministry of Health Laboratories, Tanta 16335, Egypt
- Correspondence: (N.M.D.); (R.A.R.); Tel.: +20-1096264335 (N.M.D.); +20-1001022257 (R.A.R.)
| | - Mohamed M. A. Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Mohamed Othman Mohamed
- Anatomy Department, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt;
| | - Wael B. A. Ghaly
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt;
- Physiology Department, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Rabab Ahmed Rasheed
- Histology & Cell Biology Department, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
- Correspondence: (N.M.D.); (R.A.R.); Tel.: +20-1096264335 (N.M.D.); +20-1001022257 (R.A.R.)
| |
Collapse
|