1
|
Almutairi MH, Alrubie TM, Alshareeda AT, Albarakati N, Almotiri A, Alamri AM, Almutairi BO, Alanazi M. Differential expression and regulation of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 gene profiles in colon cancer tissues and their in vitro response to epigenetic drugs. PLoS One 2024; 19:e0307724. [PMID: 39208330 PMCID: PMC11361649 DOI: 10.1371/journal.pone.0307724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Colon cancer (CC) is a significant cause of death worldwide, particularly in Saudi Arabia. To increase the accuracy of diagnosis and treatment, it is important to discover new specific biomarkers for CC. The main objectives of this research are to identify potential specific biomarkers for the early diagnosis of CC by analyzing the expressions of eight cancer testis (CT) genes, as well as to analyze how epigenetic mechanisms control the expression of these genes in CC cell lines. Tissue samples were collected from 15 male patients with CC tissues and matched NC tissues for gene expression analysis. The expression levels of specific CT genes, including ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12, were assessed using quantitative techniques. To validate the gene expression patterns, we used publicly available CC statistics. To investigate the effect of inhibition of DNA methylation and histone deacetylation on CT gene expression, in vitro experiments were performed using HCT116 and Caco-2 cell lines. There was no detected expression of the genes neither in the patient samples nor in NC tissues, except for TEX48, which exhibited upregulation in CC samples compared to NC tissues in online datasets. Notably, CT genes showed expression in testis samples. In vitro, experiments demonstrated significant enhancement in mRNA expression levels of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 following treatment with 5-aza-2'-deoxycytidine and trichostatin A in HCT116 and Caco-2 cell lines. Epigenetic treatments modify the expression of CT genes, indicating that these genes can potentially be used as biomarkers for CC. The importance of conducting further research to understand and target epigenetic mechanisms to improve CC treatment cannot be overemphasized.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M. Alrubie
- Laboratories Directorate, General Directorate of Animal Health, Ministry Deputyship for Agriculture, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Alaa T. Alshareeda
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi, Saudi Arabia
| | - Abdullah M. Alamri
- Department of Biochemistry, Genome Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Genome Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Alrubie TM, Shaik JP, Alamri AM, Alanazi M, Alshareeda AT, alqarni A, Alawfi HG, Almaiman SM, Almutairi MH. FTHL17, PRM2, CABYR, CPXCR1, ADAM29, and CABS1 are highly expressed in colon cancer patients and are regulated in vitro by epigenetic alterations. Heliyon 2024; 10:e23689. [PMID: 38187237 PMCID: PMC10767510 DOI: 10.1016/j.heliyon.2023.e23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background Colon cancer is a serious public health issue and a major cause of cancer-related mortality worldwide, including Saudi Arabia. Knowledge of genes associated with colon cancer development and progression is essential for identifying new cancer-specific biomarkers to improve the diagnosis of colon cancer. Methods The expression levels of FTHL17, PRM2, CABYR, CPXCR1, ADAM29, and CABS1 in 15 adjacent colon cancer and normal colon tissue samples from male patients were investigated using reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR) assays. qRT-PCR analysis was also used to determine whether reducing DNA methyltransferase (via 5-aza-2'-deoxycytidine treatment) or histone deacetylation (via trichostatin treatment) increased the expression levels of the tested genes. Results The analysis of the 15 colon cancer and adjacent normal colon tissue samples revealed that all six genes were expressed in both groups, but their expression levels were significantly higher in the colon cancer group. Furthermore, the mRNA expression levels of the FTHL17, PRM2, CABYR, CPXCR1, and ADAM29 genes were considerably upregulated after treatment of HCT116 and Caco-2 cells with 5-aza-2'-deoxycytidine and trichostatin. However, the CABS1 gene was activated only with trichostatin treatment. Conclusions The findings of this study suggest that FTHL17, PRM2, CABYR, CPXCR1, ADAM29, and CABS1 are suitable candidate biomarkers of colon cancer and their expressions are regulated by hypomethylation and hyperacetylation.
Collapse
Affiliation(s)
- Turki M. Alrubie
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Jilani P. Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M. Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alaa T. Alshareeda
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ayyob alqarni
- Department of Surgery, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Homoud G. Alawfi
- Department of Surgery, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah M. Almaiman
- Department of Anatomic Pathology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Pandey S, Singh R, Habib N, Singh V, Kushwaha R, Tripathi AK, Mahdi AA. Expression of CXCL8 (IL-8) in the Pathogenesis of T-Cell Acute Lymphoblastic Leukemia Patients. Cureus 2023; 15:e45929. [PMID: 37885528 PMCID: PMC10599407 DOI: 10.7759/cureus.45929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Background Inflammation plays a very important role in the pathogenesis of a wide range of diseases, such as atherosclerosis myocardial infarction, sepsis, rheumatoid arthritis, and cancer. This study aimed to investigate the association of IL-8 in T-cell acute lymphoblastic leukemia (T-ALL) patients. Methodology IL-8 levels were estimated in 52 individuals. Of the study population, 26 were T-ALL patients (all phases of leukemia were included in the study) and 26 were disease-free healthy volunteers. In this study, we employed flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction test, and western blot analysis. Results IL-8 was significantly higher in all T-ALL patients than in healthy volunteers. IL-8 levels showed a significant positive correlation in T-ALL patients at the genomic and proteomic levels. Conclusions Higher serum IL-8 levels were associated with the advanced disease stage of the clinicopathological parameters. Our results indicate that monitoring IL-8 has a role in modulating disease sensing in T-ALL and may represent a target for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sandeep Pandey
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Ranjana Singh
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Nimra Habib
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Vivek Singh
- Biochemistry, King George's Medical University, Lucknow, IND
| | | | - Anil K Tripathi
- Clinical Hematology, King George's Medical University, Lucknow, IND
| | - Abbas A Mahdi
- Biochemistry, King George's Medical University, Lucknow, IND
| |
Collapse
|
4
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
5
|
Alrubie TM, Alamri AM, Almutairi BO, Alrefaei AF, Arafah MM, Alanazi M, Semlali A, Almutairi MH. Higher Expression Levels of SSX1 and SSX2 in Patients with Colon Cancer: Regulated In Vitro by the Inhibition of Methylation and Histone Deacetylation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050988. [PMID: 37241221 DOI: 10.3390/medicina59050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Colon cancer (CC) has a high mortality rate and is often diagnosed at an advanced stage in Saudi Arabia. Thus, the identification and characterization of potential new cancer-specific biomarkers are imperative for improving the diagnosis of CC by detecting it at an early stage. Cancer-testis (CT) genes have been identified as potential biomarkers for the early diagnosis of various cancers. Among the CT genes are those belonging to the SSX family. In order to assess the usefulness of SSX family genes as cancer biomarkers for the detection of early-stage CC, the goal of this research was to validate the expressions of these genes in patients with CC and in matched patients with normal colons (NCs). Materials and Methods: RT-PCR assays were used to analyze the SSX1, SSX2, and SSX3 family gene expression levels in 30 neighboring NC and CC tissue samples from male Saudi patients. Epigenetic alterations were also tested in vitro using qRT-PCR analysis to determine whether reduced DNA methyltransferase or histone deacetylation could stimulate SSX gene expression via 5-aza-2'-deoxycytidine and trichostatin treatments, respectively. Results: The RT-PCR results showed SSX1 and SSX2 gene expression in 10% and 20% of the CC tissue specimens, respectively, but not in any of the NC tissue specimens. However, no SSX3 expression was detected in any of the examined CC or NC tissue samples. In addition, the qRT-PCR results showed significantly higher SSX1 and SSX2 expression levels in the CC tissue samples than in the NC tissue samples. The 5-aza-2'-deoxycytidine and trichostatin treatments significantly induced the mRNA expression levels of the SSX1, SSX2, and SSX3 genes in the CC cells in vitro. Conclusions: These findings suggest that SSX1 and SSX2 are potentially suitable candidate biomarkers for CC. Their expressions can be regulated via hypomethylating and histone deacetylase treatments, subsequently providing a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Turki M Alrubie
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Bader O Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahed F Alrefaei
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha M Arafah
- Pathology Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 Rue de la Terrasse, Local 1758, Québec, QC G1V 0A6, Canada
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Jia SN, Han YB, Yang R, Yang ZC. Chemokines in colon cancer progression. Semin Cancer Biol 2022; 86:400-407. [PMID: 35183412 DOI: 10.1016/j.semcancer.2022.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Colon cancer is a major human cancer accounting for about a tenth of all cancer cases thus making it among the top three cancers in terms of incidence as well as mortality. Metastasis to distant organs, particularly to liver, is the primary reason for associated mortality. Chemokines, the chemo-attractants for various immune cells, have increasingly been reported to be involved in cancer initiation and progression, including in colon cancer. Here we discuss the available knowledge on the role of several chemokines, such as, CCL2, CCL3, CCL5, CXCL1, CXCL2, CXCL8 in colon cancer progression. CCL20 is one chemokine with emerging evidence for its role in influencing colon cancer tumor microenvironment through the documents effects on fibroblasts, macrophages and immune cells. We focus on CCL20 and its receptor CCR6 as promising factors that affect multiple levels of colon cancer progression. They interact with several cytokines and TLR receptors leading to increased aggressiveness, as supported by multitude of evidence from in vitro, in vivo studies as well as human patient samples. CCL20-CCR6 bring about their biological effects through regulation of several signaling pathways, including, ERK and NF-κB pathways, in addition to the epithelial-mesenchymal transition. Signaling involving CCL20-CCR6 has profound effect on colon cancer hepatic metastasis. Combined with elevated CCL20 levels in colon tumors and metastatic patients, the above information points to a need for further evaluation of chemokines as diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Sheng-Nan Jia
- Department of HepatoPancreatoBiliary Medicine, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Rui Yang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ze-Cheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
7
|
Almutairi MH, Alrubie TM, Almutairi BO, Alamri AM, Alrefaei AF, Arafah MM, Alanazi M, Semlali A. The Expression Patterns of Human Cancer-Testis Genes Are Induced through Epigenetic Drugs in Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:1319. [PMID: 36355490 PMCID: PMC9692864 DOI: 10.3390/ph15111319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The expression of human germline genes is restricted to the germ cells of the gonads, which produce sperm and eggs. The germline genes involved in testis development and potentially activated in cancer cells are known as cancer-testis (CT) genes. These genes are potential therapeutic targets and biomarkers, as well as drivers of the oncogenic process. CT genes can be reactivated by treatment with drugs that demethylate DNA. The majority of the existing literature on CT gene activation focuses on X-chromosome-produced CT genes. We tested the hypothesis that epigenetic landscape changes, such as DNA methylation, can alter several CT gene expression profiles in cancer and germ cells. METHODS Colon cancer (CC) cell lines were treated with the DNA methyltransferase inhibitor (DNMTi) 5-aza-2'-deoxycytidine, or with the histone deacetylase inhibitor (HDACi) trichostatin A (TSA). The effects of these epigenetic treatments on the transcriptional activation of previously published CT genes (CTAG1A, SCP2D1, TKTL2, LYZL6, TEX33, and ACTRT1) and testis-specific genes (NUTM1, ASB17, ZSWIM2, ADAM2, and C10orf82) were investigated. RESULTS We found that treatment of CC cell lines with 5-aza-2'-deoxycytidine or TSA correlated with activation of X-encoded CT genes and non-X-encoded CT genes in somatic (non-germline) cells. CONCLUSION These findings confirm that a subset of CT genes can be regulated by hypomethylating drugs and subsequently provide a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Turki M. Alrubie
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahed F. Alrefaei
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha M. Arafah
- Pathology Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 Rue de la Terrasse, Local 1758, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Zhang Z, Zhu Q, Wang S, Shi C. Epigallocatechin-3-gallate inhibits the formation of neutrophil extracellular traps and suppresses the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 pathway. Mol Cell Biochem 2022; 478:887-898. [PMID: 36112238 DOI: 10.1007/s11010-022-04550-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1β, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1β and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.
Collapse
Affiliation(s)
- Zhuoxian Zhang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiuli Zhu
- Department of Genetics, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Siya Wang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
9
|
Almutairi MH, Alotaibi MM, Alonaizan R, Almutairi BO. Expression Profile of MAGE-B1 Gene and Its Hypomethylation Activation in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6066567. [PMID: 35937396 PMCID: PMC9348940 DOI: 10.1155/2022/6066567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Cancer-testis (CT) genes are typically expressed in the testes; however, they have been linked to aberrant expression in a variety of malignancies. MAGE-B family genes are an example of CT genes. Therefore, the overarching objective of this study was to examine the expressions of MAGE-B family genes in several patients with colon cancer (CC) to see if they might be employed as cancer biomarkers in the early phases of cancer detection and to improve treatment. In this investigation, RT-PCR was used to analyze MAGE-B family genes in neighboring normal colon (NC) tissue from 10 CC patients. In addition, the effect of DNA demethylation on the expression status of the MAGE-B1 gene was evaluated by RT-PCR in HCT116 and Caco-2 cells and by qRT-PCR for HCT116 only after treating both CC cell lines with varying concentrations of 5-aza-2'-deoxycytidine (1.0, 5.0, and 10.0 μM) for 48 or 72 hours. All MAGE-B family genes except for MAGE-B1 showed weak bands in several samples of NC tissues: MAGE-B2, MAGE-B3, MAGE-B4, MAGE-B5, and MAGE-B6 genes were observed in 40%, 50%, 40%, 30%, and 60% of the NC samples, respectively. Nonetheless, they had strong bands in multiple samples of CC tissues, with 70%, 90%, 60%, 50%, and 90% of the CC samples, respectively. Interestingly, MAGE-B1 was detected in 60% of CC tissues but not in NC tissues, suggesting that it is a potential biomarker for early CC detection. MAGE-B1 expression was not observed in either untreated or DMSO-treated HCT116 cells after 48 or 72 hours of treatment. However, according to the RT-PCR and qRT-PCR results, the MAGE-B1 gene was overexpressed in the HCT116 cells treated with three different concentrations of 5-aza-2'-deoxycytidine. This shows that demethylation plays a crucial role in MAGE-B1 expression activation.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Mona M. Alotaibi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|