1
|
Su Q, Wong OWH, Lu W, Wan Y, Zhang L, Xu W, Li MKT, Liu C, Cheung CP, Ching JYL, Cheong PK, Leung TF, Chan S, Leung P, Chan FKL, Ng SC. Multikingdom and functional gut microbiota markers for autism spectrum disorder. Nat Microbiol 2024; 9:2344-2355. [PMID: 38977906 DOI: 10.1038/s41564-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024]
Abstract
Associations between the gut microbiome and autism spectrum disorder (ASD) have been investigated although most studies have focused on the bacterial component of the microbiome. Whether gut archaea, fungi and viruses, or function of the gut microbiome, is altered in ASD is unclear. Here we performed metagenomic sequencing on faecal samples from 1,627 children (aged 1-13 years, 24.4% female) with or without ASD, with extensive phenotype data. Integrated analyses revealed that 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic pathways were altered in children with ASD. Machine learning using single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 in differentiating children with ASD from those that are neurotypical. A panel of 31 multikingdom and functional markers showed a superior diagnostic accuracy with an AUC of 0.91, with comparable performance for males and females. Accuracy of the model was predominantly driven by the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which were less abundant in children with ASD. Collectively, our findings highlight the potential application of multikingdom and functional gut microbiota markers as non-invasive diagnostic tools in ASD.
Collapse
Affiliation(s)
- Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Moses K T Li
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | - Ting Fan Leung
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Leung
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Abbas A, Anwar F, Ahmad N, Rehman AT, Mohammed OA, Abdel-Reheim MA, Iqbal M, Iqbal S, Nazir A. GC-MS analysis and nutra-pharmaceutical potential of Mentha piperita essential oil extracted by supercritical fluid extraction and hydro-distillation. Heliyon 2024; 10:e35282. [PMID: 39220953 PMCID: PMC11365357 DOI: 10.1016/j.heliyon.2024.e35282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
This study reports the comparative evaluation of yield, physico-chemical composition and biological attributes (antioxidant activity, antimicrobial activity, biofilm inhibition and hemolytic activity) of peppermint (Mentha piperita L.) essential oil (EO) obtained by hydro-distillation (HD) and supercritical fluid (CO2) extraction (SCFE) methods. The yield (%) of EO obtained by HD (0.20 %) was significantly (p < 0.05) higher than that of SCFE (0.13 %) while the variation in the physical parameters like solubility, color, density (at 25 °C) and refractive index (at 25 °C) was not significant between the tested oils. The data of chemical compositional analysis revealed that menthol was the key component in the EO obtained by HD (52.85 %) and SCFE (45.51 %), followed by menthone [HD (25.93 %) and SCFE (27.3 %)] and eucalyptol [HD (8.59 %); SCFE (8.92 %)]. The EO extracted with supercritical fluid (SCFE-EO) exhibited superior (p < 0.05) DPPH free radical inhibition potential (52 %) with an IC50 value of 15.65 μg/mL and reducing power compared to that of HD-EO. The highest antimicrobial activity was exhibited by SCFE-EO against Pasturella multocida with an inhibition zone of 18.00 mm (MIC value of 86 μg/mL). The results of biofilm inhibition and hemolytic activity revealed that the SCFE method was superior to recover high quality EO in comparison to the HD method. The peppermint EO obtained by SCFE, owing to potent bioactive components, can be a potential candidate to develop nutra-pharmaceuticals.
Collapse
Affiliation(s)
- Ali Abbas
- Institute of Chemistry, University of Sargodha, Sargodha, 41000, Pakistan
- Department of Chemistry, Govt. Islamia Graduate College, Chiniot, Pakistan
| | - Farooq Anwar
- Institute of Chemistry, University of Sargodha, Sargodha, 41000, Pakistan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Afifa tur Rehman
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
3
|
Jamwal A, Varghese G, Sarawat D, Tejan N, Patel SS, Sahu C. Characterization of Weissella Species during a 3-Year Observational Study - An Emerging Threat. Am J Trop Med Hyg 2024; 110:1006-1009. [PMID: 38507800 PMCID: PMC11066348 DOI: 10.4269/ajtmh.23-0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
Weissella species are mistaken for Lactobacillus or Leuconostoc because of their Gram-staining property and resistance to vancomycin. In this study, we aimed to evaluate the demographic pattern, presenting symptoms, risk factors, associated pathologies, and clinical outcomes in patients with Weissella infection. We also analyzed the antibiotic susceptibility pattern of the Weissella species isolated. This retrospective observational study was done from January 2021 to August 2023 in a tertiary care referral center in Uttar Pradesh. All Weissella species isolated from blood cultures or cerebrospinal fluid (CSF) samples during this period were included in the study. Twenty-four-hour growth from a positive blood culture or CSF sample was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Demographic and clinical details of the patients were extracted from the hospital information system. Kirby-Bauer disk diffusion was used for antibiotic susceptibility testing. During the 3-year study, 13 isolates of Weissella species were identified in our laboratory. Among the patients, male predominance was seen. The age range of the patients was 5-53 years. The samples were blood samples (n = 11) and CSF samples (n = 2). Of these isolates, 12 (92.3%) were identified as Weissella confusa and 1 (7.69%) was identified as Weissella viridescens. Common risk factors were anemia, prolonged hospital stay, indwelling catheter, chemotherapy, and chronic kidney disease. All the isolates in this study were sensitive to amikacin, daptomycin, amoxicillin-clavulanate, minocycline, and linezolid. Death was attributed to Weissella infection in three patients. Weissella species are opportunistic organisms that need to be identified quickly and precisely to guarantee the right course of treatment.
Collapse
Affiliation(s)
- Ashima Jamwal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gerlin Varghese
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Deepika Sarawat
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Liu X, Jiang N, Wang X, Yan H, Guan L, Kong L, Chen J, Zhang H, Ma H. Weissella cibaria Relieves Gut Inflammation Caused by Escherichia coli through Inflammation Modulation and Gut Microbiota Regulation. Foods 2024; 13:1133. [PMID: 38611436 PMCID: PMC11011356 DOI: 10.3390/foods13071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The emergence of multi-drug-resistant (MDR) pathogens has considerably challenged the development of new drugs. Probiotics that inhibit MDR pathogens offer advantages over chemical antibiotics and drugs due to their increased safety and fewer side effects. This study reported that Weissella cibaria P-8 isolated from pickles showed excellent antibacterial activity against intestinal pathogens, particularly the antibacterial activity against MDR Escherichia coli B2 was the highest. This study showed that the survival rates of W. cibaria P-8 at pH 2.0 and 0.3% bile salt concentration were 72% and 71.56%, respectively, and it still had antibacterial activity under pepsin, trypsin, protease K, and catalase hydrolysis. Moreover, W. cibaria P-8 inhibits the expression of inflammatory factors interleukin-1β, tumor necrosis factor-α, and interleukin-6, upregulates the interleukin-10 level, and increases total antioxidant capacity and superoxide dismutase enzyme activity in serum. W. cibaria P-8 also efficiently repairs intestinal damage caused by E. coli infection. The gut microbiota analysis demonstrated that W. cibaria P-8 colonizes the intestine and increases the abundance of some beneficial intestinal microorganisms, particularly Prevotella. In conclusion, W. cibaria P-8 alleviated MDR E. coli-induced intestinal inflammation by regulating inflammatory cytokine and enzyme activity and rebalancing the gut microbiota, which could provide the foundation for subsequent clinical analyses and probiotic product development.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Nan Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xinyue Wang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haowen Yan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lili Guan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
- The Key Laboratory of New Veterinary Drug Research, Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
| |
Collapse
|
5
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|