1
|
Zhao Y, Uduman M, Siu JHY, Tull TJ, Sanderson JD, Wu YCB, Zhou JQ, Petrov N, Ellis R, Todd K, Chavele KM, Guesdon W, Vossenkamper A, Jassem W, D'Cruz DP, Fear DJ, John S, Scheel-Toellner D, Hopkins C, Moreno E, Woodman NL, Ciccarelli F, Heck S, Kleinstein SH, Bemark M, Spencer J. Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat Commun 2018; 9:3857. [PMID: 30242242 PMCID: PMC6155012 DOI: 10.1038/s41467-018-06089-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/17/2018] [Indexed: 01/19/2023] Open
Abstract
Human memory B cells and marginal zone (MZ) B cells share common features such as the expression of CD27 and somatic mutations in their IGHV and BCL6 genes, but the relationship between them is controversial. Here, we show phenotypic progression within lymphoid tissues as MZ B cells emerge from the mature naïve B cell pool via a precursor CD27-CD45RBMEM55+ population distant from memory cells. By imaging mass cytometry, we find that MZ B cells and memory B cells occupy different microanatomical niches in organised gut lymphoid tissues. Both populations disseminate widely between distant lymphoid tissues and blood, and both diversify their IGHV repertoire in gut germinal centres (GC), but nevertheless remain largely clonally separate. MZ B cells are therefore not developmentally contiguous with or analogous to classical memory B cells despite their shared ability to transit through GC, where somatic mutations are acquired.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Mohamed Uduman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Thomas J Tull
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Jeremy D Sanderson
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Nedyalko Petrov
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Richard Ellis
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Katrina Todd
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Konstantia-Maria Chavele
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - William Guesdon
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Anna Vossenkamper
- Barts & The London School of Medicine and Dentistry, Blizard Institute, Whitechapel, London, E1 2AT, UK
| | - Wayel Jassem
- Liver Transplant Unit, Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9NT, UK
| | - David P D'Cruz
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - David J Fear
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Susan John
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claire Hopkins
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Estefania Moreno
- Barts & The London School of Medicine and Dentistry, Blizard Institute, Whitechapel, London, E1 2AT, UK
| | - Natalie L Woodman
- School of Cancer Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Francesca Ciccarelli
- School of Cancer Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK
| | - Susanne Heck
- Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, SE1 9RT, UK
| | - Steven H Kleinstein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Mats Bemark
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30, Gothenburg, Sweden.
| | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK.
| |
Collapse
|
2
|
Hwang IY, Boularan C, Harrison K, Kehrl JH. Gα i Signaling Promotes Marginal Zone B Cell Development by Enabling Transitional B Cell ADAM10 Expression. Front Immunol 2018; 9:687. [PMID: 29696016 PMCID: PMC5904254 DOI: 10.3389/fimmu.2018.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
The follicular (FO) versus marginal zone (MZ) B cell fate decision in the spleen depends upon BCR, BAFF, and Notch2 signaling. Whether or how Gi signaling affects this fate decision is unknown. Here, we show that direct contact with Notch ligand expressing stromal cells (OP9-Delta-like 1) cannot promote normal MZ B cell development when progenitor B cells lack Gαi proteins, or if Gi signaling is disabled. Consistent with faulty ADAM10-dependent Notch2 processing, Gαi-deficient transitional B cells had low ADAM10 membrane expression levels and reduced Notch2 target gene expression. Immunoblotting Gαi-deficient B cell lysates revealed a reduction in mature, processed ADAM10. Suggesting that Gαi signaling promotes ADAM10 membrane expression, stimulating normal transitional B cells with CXCL12 raised it, while inhibiting Gαi nucleotide exchange blocked its upregulation. Surprisingly, inhibiting Gαi nucleotide exchange in transitional B cells also impaired the upregulation of ADAM10 that occurs following antigen receptor crosslinking. These results indicate that Gαi signaling supports ADAM10 maturation and activity in transitional B cells, and ultimately Notch2 signaling to promote MZ B cell development.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cedric Boularan
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,InvivoGen, Toulouse, France
| | - Kathleen Harrison
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Zhang Y, Zhu G, Xiao H, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N, Wang R. CD19 regulates ADAM28-mediated Notch2 cleavage to control the differentiation of marginal zone precursors to MZ B cells. J Cell Mol Med 2017; 21:3658-3669. [PMID: 28707394 PMCID: PMC5706524 DOI: 10.1111/jcmm.13276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
As the first line of defence, marginal zone (MZ) B cells play principal roles in clearing blood‐borne pathogens during infection and are over‐primed in autoimmune diseases. However, the basic mechanisms underlying MZ B‐cell development are still unclear. We found here that CD19 deficiency blocked the differentiation of marginal zone precursors (MZP) to MZ B cells, whereas CD19 expression in CD19‐deficient MZP rescues MZ B‐cell generation. Furthermore, CD19 regulates Notch2 cleavage by up‐regulating ADAM28 expression in MZP. Finally, we found that CD19 suppressed Foxo1 expression to promote ADAM28 expression in MZP. These results suggest that CD19 controls the differentiation of MZP to MZ B cells by regulating ADAM28‐mediated Notch2 cleavage. Thus, we demonstrated the basic mechanisms underlying the differentiation of MZP to MZ B cells.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,College of Pharmacy, Henan University, Kaifeng, China
| | - Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang J, Wan M, Ren J, Gao J, Fu M, Wang G, Liu Y, Li W. Positive selection of B10 cells is determined by BCR specificity and signaling strength. Cell Immunol 2016; 304-305:27-34. [PMID: 27132875 DOI: 10.1016/j.cellimm.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
B10 cells, a regulatory B cell subset, negatively regulate immune responses in an IL-10-dependent manner. However, the mechanism of B10 cell development is unclear. We found that B10 cells mainly identified self-antigens. TgVH3B4 transgenic mice, whose VH was derived from an actin-reactive natural antibody, exhibit elevated numbers of actin-binding B10 cells. Immunization of TgVH3B4 mice with actin induced elevated B10 cell numbers in an antigen-specific manner, indicating positive selection of B10 cells by self-antigens. Furthermore, higher BCR signaling strength facilitated B10 cell development. We also observed that actin-reactive IgG levels were unchanged in TgVH3B4 mice after immunization with actin in contrast to the elevated OVA-reactive IgG level after immunization with OVA, indicating that B10 cells acted in an antigen-specific manner to inhibit the immune response. Our data demonstrate for the first time that B10 cells are positively selected by self-reactivity and that higher BCR signaling strength promotes B10 cell development.
Collapse
Affiliation(s)
- Jigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Ming Wan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jing Ren
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
5
|
Abstract
Over the last decade it has become evident that in addition to producing antibody, B cells activate the immune system by producing cytokines and via antigen presentation. In addition, B cells also exhibit immunosuppressive functions via diverse regulatory mechanisms. This subset of B cells, known as regulatory B cells (Bregs), contributes to the maintenance of tolerance, primarily via the production of IL-10. Studies in experimental animal models, as well as in patients with autoimmune diseases, have identified multiple Breg subsets exhibiting diverse mechanisms of immune suppression. In this review, we describe the different Breg subsets identified in mice and humans, and their diverse mechanisms of suppression in different disease settings.
Collapse
Affiliation(s)
- Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
6
|
DeMicco A, Naradikian MS, Sindhava VJ, Yoon JH, Gorospe M, Wertheim GB, Cancro MP, Bassing CH. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 195:3449-62. [PMID: 26320247 DOI: 10.4049/jimmunol.1500512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Amy DeMicco
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin S Naradikian
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael P Cancro
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
7
|
Peng S, Wang K, Gu Y, Chen Y, Nan X, Xing J, Cui Q, Chen Y, Ge Q, Zhao H. TRAF3IP3, a novel autophagy up-regulated gene, is involved in marginal zone B lymphocyte development and survival. Clin Exp Immunol 2015; 182:57-68. [PMID: 26011558 DOI: 10.1111/cei.12658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 12/26/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 3 (TRAF3) interacting protein 3 (TRAF3IP3; also known as T3JAM) is expressed specifically in immune organs and tissues. To investigate the impact of TRAF3IP3 on immunity, we generated Traf3ip3 knock-out (KO) mice. Interestingly, these mice exhibited a significant reduction in the number of common lymphoid progenitors (CLPs) and inhibition of B cell development in the bone marrow. Furthermore, Traf3ip3 KO mice lacked marginal zone (MZ) B cells in the spleen. Traf3ip3 KO mice also exhibited a reduced amount of serum natural antibodies and impaired T cell-independent type II (TI-II) responses to trinitrophenol (TNP)-Ficoll antigen. Additionally, our results showed that Traf3ip3 promotes autophagy via an ATG16L1-binding motif, and MZ B cells isolated from mutant mice showed a diminished level of autophagy and a high rate of apoptosis. These results suggest that TRAF3IP3 contributes to MZ B cell survival by up-regulating autophagy, thereby promoting the TI-II immune response.
Collapse
Affiliation(s)
- S Peng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Human Disease Genomics Center, Peking University, Beijing, China
| | - K Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Y Gu
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Y Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Human Disease Genomics Center, Peking University, Beijing, China
| | - X Nan
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - J Xing
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q Cui
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Y Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - H Zhao
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Liu Z, Brunskill E, Varnum-Finney B, Zhang C, Zhang A, Jay PY, Bernstein I, Morimoto M, Kopan R. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development 2015; 142:2452-63. [PMID: 26062937 DOI: 10.1242/dev.125492] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022]
Abstract
Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.
Collapse
Affiliation(s)
- Zhenyi Liu
- SAGE Labs, A Horizon Discovery Group Company, St Louis, MO 63146, USA
| | - Eric Brunskill
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Barbara Varnum-Finney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chi Zhang
- Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew Zhang
- University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Patrick Y Jay
- Departments of Pediatrics and Genetics, Washington University, St Louis, MO 63110, USA
| | - Irv Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Mitsuru Morimoto
- Lung Development and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Raphael Kopan
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Bemark M. Translating transitions - how to decipher peripheral human B cell development. J Biomed Res 2015; 29:264-84. [PMID: 26243514 PMCID: PMC4547376 DOI: 10.7555/jbr.29.20150035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
During the last two decades our understanding of human B cell differentiation has developed considerably. Our understanding of the human B cell compartment has advanced from a point where essentially all assays were based on the presence or not of class-switched antibodies to a level where a substantial diversity is appreciated among the cells involved. Several consecutive transitional stages that newly formed IgM expressing B cells go through after they leave the bone marrow, but before they are fully mature, have been described, and a significant complexity is also acknowledged within the IgM expressing and class-switched memory B cell compartments. It is possible to isolate plasma blasts in blood to follow the formation of plasma cells during immune responses, and the importance and uniqueness of the mucosal IgA system is now much more appreciated. Current data suggest the presence of at least one lineage of human innate-like B cells akin to B1 and/or marginal zone B cells in mice. In addition, regulatory B cells with the ability to produce IL-10 have been identified. Clinically, B cell depletion therapy is used for a broad range of conditions. The ability to define different human B cell subtypes using flow cytometry has therefore started to come into clinical use, but as our understanding of human B cell development further progresses, B cell subtype analysis will be of increasing importance in diagnosis, to measure the effect of immune therapy and to understand the underlying causes for diseases. In this review the diversity of human B cells will be discussed, with special focus on current data regarding their phenotypes and functions.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University hospital, SE 413 45 Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
| |
Collapse
|
10
|
Benitez A, Weldon AJ, Tatosyan L, Velkuru V, Lee S, Milford TA, Francis OL, Hsu S, Nazeri K, Casiano CM, Schneider R, Gonzalez J, Su RJ, Baez I, Colburn K, Moldovan I, Payne KJ. Differences in mouse and human nonmemory B cell pools. THE JOURNAL OF IMMUNOLOGY 2014; 192:4610-9. [PMID: 24719464 DOI: 10.4049/jimmunol.1300692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Coexpression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. In this study, we validate these markers for identifying analogous subsets in humans and use them to compare the nonmemory B cell pools in mice and humans, across tissues, and during fetal/neonatal and adult life. Among human CD19(+)IgM(+) B cells, the CD21/CD24 schema identifies distinct populations that correspond to transitional 1 (T1), transitional 2 (T2), follicular mature, and marginal zone subsets identified in mice. Markers specific to human B cell development validate the identity of marginal zone cells and the maturation status of human CD21/CD24 nonmemory B cell subsets. A comparison of the nonmemory B cell pools in bone marrow, blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the nonmemory B cell pool in mouse bone marrow, in which their frequency is more than twice that in humans. Conversely, in spleen, the T1:T2 ratio shows that T2 cells are proportionally ∼ 8-fold higher in humans than in mice. Despite the relatively small contribution of transitional B cells to the human nonmemory pool, the number of naive follicular mature cells produced per transitional B cell is 3- to 6-fold higher across tissues than in mice. These data suggest differing dynamics or mechanisms produce the nonmemory B cell compartments in mice and humans.
Collapse
Affiliation(s)
- Abigail Benitez
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Prolactin levels correlate with abnormal B cell maturation in MRL and MRL/lpr mouse models of systemic lupus erythematosus-like disease. Clin Dev Immunol 2013; 2013:287469. [PMID: 24454471 PMCID: PMC3878598 DOI: 10.1155/2013/287469] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022]
Abstract
Prolactin (PRL) plays an important role in modulating the immune response. In B cells, PRL enhances antibody production, including antibodies with self-specificity. In this study, our aims were to determine the level of PRL receptor expression during bone-marrow B-cell development and to assess whether the presence of high PRL serum concentrations influences absolute numbers of developing populations and disease outcome in lupus-prone murine models. We observed that the PRL-receptor is expressed in early bone-marrow B-cell; the expression in lupus-prone mice, which had the highest level of expression in pro-B cells and immature cells, differed from that in wild-type mice. These expression levels did not significantly change in response to hyperprolactinemia; however, populations of pro-B and immature cells from lupus-prone strains showed a decrease in the absolute numbers of cells with high PRL-receptor expression in response to PRL. Because immature self-reactive B cells are constantly being eliminated, we assessed the expression of survival factor BIRC5, which is more highly expressed in both pro-B and immature B-cells in response to PRL and correlates with the onset of disease. These results identify an important role of PRL in the early stages of the B-cell maturation process: PRL may promote the survival of self-reactive clones.
Collapse
|
12
|
Zhang Z, Zhou L, Yang X, Wang Y, Zhang P, Hou L, Hu X, Xing Y, Liu Y, Li W, Han H. Notch-RBP-J-independent marginal zone B cell development in IgH transgenic mice with VH derived from a natural polyreactive antibody. PLoS One 2012; 7:e38894. [PMID: 22719978 PMCID: PMC3374804 DOI: 10.1371/journal.pone.0038894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Both the B cell antigen receptor (BCR) signaling and Notch signaling pathway play important roles in marginal zone (MZ) B cell development; however, if and how these two signaling pathways engage in crosstalk with each other remain unclear. In the present study, IgH transgenic mice (TgV(H)3B4) were crossed with mice with Notch downstream transcription factor RBP-J floxed alleles (RBP-J(f/f)) and Mx-Cre transgene. Subsequently, MZ B cell development was analyzed in 3B4/Cre/RBP-J(f/f) mice that expressed the transgenic 3B4 IgH and exhibited a deficiency in Notch signaling in B cells upon poly (I:C) injection. We observed that MZ B cell numbers were severely reduced, but still detectable in 3B4/Cre/RBP-J(f/f) mice, in contrast to increased numbers of MZ B cells in TgV(H)3B4 mice and almost no MZ B cells in Cre/RBP-J(f/f) mice. The majority of the MZ B cells in the 3B4/Cre/RBP-J(f/f) mice had the same antigen specificity with that of 3B4 antibody, indicating that a particular BCR specificity might direct MZ B cell development in the absence of Notch signaling. The number of MZ B precursor (MZP) cells was reduced sharply in 3B4/Cre/RBP-J(f/f) mice, and the number of transitional stage 1 and transitional stage 2 cells did not change that much, indicating that the interaction between BCR and Notch signaling likely occurred during the T2-MZP stage. Based on the transgenic mouse model, our data indicate that MZ B cells with certain BCR specificity can develop in a Notch-RBP-J independent manner.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lanhua Zhou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Dermatology, Affiliated Hospital of Institute of Aviation Medicine, Air Force, Beijing, China
| | - Xinwei Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yaochun Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lihong Hou
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Xinbin Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ying Xing
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (WL); (HH)
| | - Hua Han
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (WL); (HH)
| |
Collapse
|
13
|
Zhang S, Zhou X, Lang RA, Guo F. RhoA of the Rho family small GTPases is essential for B lymphocyte development. PLoS One 2012; 7:e33773. [PMID: 22438996 PMCID: PMC3306291 DOI: 10.1371/journal.pone.0033773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/16/2012] [Indexed: 12/24/2022] Open
Abstract
RhoA is a member of the Rho family small GTPases that are implicated in various cell functions including proliferation and survival. However, the physiological role of RhoA in vivo remains largely unknown. Here, we deleted RhoA in the B cell and hematopoietic stem cell (HSC) populations in RhoAflox/flox mice with CD19 and Mx promoter-driven Cre expression, respectively. Deletion of RhoA by CD19Cre/+ significantly blocked B cell development in spleen, leading to a marked reduction in the number of transitional, marginal zone, and follicular B cells. Surprisingly, neither B cell proliferation in response to either LPS or B cell receptor (BCR) engagement nor B cell survival rate in vivo was affected by RhoA deletion. Furthermore, RhoA−/− B cells, like control cells, were rescued from apoptosis by BCR crosslinking in vitro. In contrast, RhoA deficiency led to a defect in B cell activating factor (BAFF)-mediated B cell survival that was associated with a dampened expression of BAFF receptor and a loss of BAFF-mediated Akt activation. Finally, HSC deletion of RhoA by Mx-Cre severely reduced proB/preB and immature B cell populations in bone marrow while common lymphoid progenitors were increased, indicating that RhoA is also required for B cell progenitor/precursor differentiation. Taken together, our results uncover an important role for RhoA at multiple stages of B cell development.
Collapse
Affiliation(s)
- Shuangmin Zhang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xuan Zhou
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ouwendijk WJD, Mahalingam R, Traina-Dorge V, van Amerongen G, Wellish M, Osterhaus ADME, Gilden D, Verjans GMGM. Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash. J Neurovirol 2012; 18:91-9. [PMID: 22399159 PMCID: PMC3325412 DOI: 10.1007/s13365-012-0083-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 11/29/2022]
Abstract
Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection. To dissect the virus and host immune factors during acute SVV infection, we analyzed four SVV-seronegative Chinese rhesus macaques infected intratracheally with cell-associated 5 × 103 plaque-forming units (pfu) of SVV-expressing green fluorescent protein (n = 2) or 5 × 104 pfu of wild-type SVV (n = 2). All monkeys developed viremia and SVV-specific adaptive B- and T-cell immune responses, but none developed skin rash. At necropsy 21 days postinfection, SVV DNA was found in ganglia along the entire neuraxis and in viscera, and SVV RNA was found in ganglia, but not in viscera. The amount of SVV inoculum was associated with the extent of viremia and the immune response to virus. Our findings demonstrate that acute SVV infection of Chinese rhesus macaques leads to ganglionic infection by the hematogenous route and the induction of a virus-specific adaptive memory response in the absence of skin rash.
Collapse
|
15
|
Cuda CM, Li S, Liang S, Yin Y, Potula HHS, Xu Z, Sengupta M, Chen Y, Butfiloski E, Baker H, Chang LJ, Dozmorov I, Sobel ES, Morel L. Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:604-14. [PMID: 22180614 PMCID: PMC3253202 DOI: 10.4049/jimmunol.1002362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sle1a.1 is part of the Sle1 susceptibility locus, which has the strongest association with lupus nephritis in the NZM2410 mouse model. In this study, we show that Sle1a.1 results in the production of activated and autoreactive CD4(+) T cells. Additionally, Sle1a.1 expression reduces the peripheral regulatory T cell pool, as well as induces a defective response of CD4(+) T cells to the retinoic acid expansion of TGF-β-induced regulatory T cells. At the molecular level, Sle1a.1 corresponds to an increased expression of a novel splice isoform of Pbx1, Pbx1-d. Pbx1-d overexpression is sufficient to induce an activated/inflammatory phenotype in Jurkat T cells and to decrease their apoptotic response to retinoic acid. PBX1-d is expressed more frequently in the CD4(+) T cells from lupus patients than from healthy controls, and its presence correlates with an increased central memory T cell population. These findings indicate that Pbx1 is a novel lupus susceptibility gene that regulates T cell activation and tolerance.
Collapse
Affiliation(s)
- Carla M. Cuda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Shujuan Liang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Yiming Yin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hari Hara S.K. Potula
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Mayami Sengupta
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Yifang Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Edward Butfiloski
- Department of Medicine, Division of Rheumatology and Clinical Medicine, University of Florida, Gainesville, FL 32610
| | - Henry Baker
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL 32610
| | - Lung-Ji Chang
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL 32610
| | - Igor Dozmorov
- Pathology Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| | - Eric S. Sobel
- Department of Medicine, Division of Rheumatology and Clinical Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
16
|
Bockstal V, Guirnalda P, Caljon G, Goenka R, Telfer JC, Frenkel D, Radwanska M, Magez S, Black SJ. T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 2011; 7:e1002089. [PMID: 21738467 PMCID: PMC3128123 DOI: 10.1371/journal.ppat.1002089] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/12/2011] [Indexed: 12/31/2022] Open
Abstract
African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves. African trypanosomiasis caused by Trypanosoma brucei species is fatal in both humans and animals and cannot be combated by vaccination because of extensive parasite antigenic variation. Effective trypanosome control and clearance from the bloodstream involves the action of antibodies specific for the parasite's highly diverse variable surface glycoprotein antigens. However, experimental infections in mice have shown that trypanosomiasis elicits a rapid process of B cell exhaustion and loss of protective antibody responses. Indeed, both marginal zone B cells, the first line of defense against blood-borne pathogens like T. brucei parasites, and follicular B cells, which are the major source for developing high-affinity antibody-producing plasma cells and memory B cells, become depleted during infection. In addition, existing B-cell memory, both against parasite antigens and non related pathogens, is destroyed early on in infection. Here, we demonstrate that during infection, B cell development is decreased in the bone marrow and early B cell development is taken over by the spleen. However, full maturation of developing B cells is abrogated by the occurrence of transitional B cell apoptosis. This impairs the replenishment of the mature marginal zone and follicular B cell pools and prevents the buildup of protective immunity against successive parasitemic waves.
Collapse
Affiliation(s)
- Viki Bockstal
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
| | - Patrick Guirnalda
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Guy Caljon
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- Unit of Veterinary Protozoology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Radhika Goenka
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Janice C. Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Deborah Frenkel
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | | | - Stefan Magez
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- * E-mail: (SJB); (SM)
| | - Samuel J. Black
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (SJB); (SM)
| |
Collapse
|
17
|
Acute Disruption of Bone Marrow B Lymphopoiesis and Apoptosis of Transitional and Marginal Zone B Cells in the Spleen following a Blood-Stage Plasmodium chabaudi Infection in Mice. J Parasitol Res 2011; 2011:534697. [PMID: 21687602 PMCID: PMC3112522 DOI: 10.1155/2011/534697] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/25/2011] [Indexed: 12/27/2022] Open
Abstract
B cells and antibodies are essential for the protective immune response against a blood-stage Plasmodium infection. Although extensive research has focused on memory as well as plasma B-cell responses during infection, little is known about how malaria affects B-cell development and splenic maturation into marginal zone B (MZB) and follicular B (FoB) cells. In this study, we show that acute Plasmodium chabaudi AS infection in C57Bl/6 mice causes severe disruption of B lymphopoiesis in the bone marrow, affecting in particular pro-, pre-, and immature B cells as well as the expression of the bone marrow B-cell retention chemokine CXCL12. In addition, elevated apoptosis of transitional T2 and marginal zone (MZ) B cells was observed during and subsequent to the control of the first wave of parasitemia. In contrast, Folllicular (Fo) B cells levels were retained in the spleen throughout the infection, suggesting that these are essential for parasite clearance and proper infection control.
Collapse
|
18
|
Moon EY, Yi GH, Kang JS, Lim JS, Kim HM, Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 2011; 8:56-67. [PMID: 21288165 DOI: 10.3109/1547691x.2010.543995] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here, we investigated whether titanium dioxide (TiO₂) nanoparticles affect in vivo tumor growth through the modulation of mononuclear leukocytes. In vitro lymphocyte proliferation by lipopolysaccharide (LPS) or concanavalin A (ConA) was reduced by < 25 nm TiO₂ with a dose-dependent manner. Similarly, TiO₂ nanoparticles inhibited nitric oxide (NO) production from bone marrow-derived macrophages obtained from naïve mice. When mice were intraperitoneally (IP) injected with < 25 or < 100 nm TiO₂ once a day for 7 days, total cell number of splenocytes was reduced in the spleen of TiO₂ nanoparticle-exposed mice. Both CD4+ and CD8+ T-lymphocyte numbers were significantly decreased and B-lymphocyte development was retarded by host exposure to the TiO₂ nanoparticles. LPS-stimulated spleen cell proliferation was significantly reduced by host exposure to < 25 or < 100 nm TiO₂, but no changes were detected in ConA-stimulated spleen cell proliferation. Further, LPS-stimulated cytokine production by peritoneal macrophages and the percentage of NK1.1+ natural killer cells among splenocytes was reduced by the host exposures to the TiO₂ nanoparticles. When mice were IP injected with TiO₂ nanoparticles once a day for 28 days prior to the subcutaneous implantation of B16F10 melanoma cells, tumor growth was subsequently significantly increased. Collectively, these results show that TiO₂ nanoparticles may damage the development and proliferation of B- and T-lymphocytes, reduce the activity of macrophages, and decrease natural killer (NK) cell population levels, outcomes that appear to lead to an increase in tumor growth in situ. These studies allow us to suggest that TiO₂ nanoparticles might have the potential to enhance tumor growth through immunomodulation of B- and T-lymphocytes, macrophages, and NK cells.
Collapse
Affiliation(s)
- Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
19
|
DeKoter RP, Geadah M, Khoosal S, Xu LS, Thillainadesan G, Torchia J, Chin SS, Garrett-Sinha LA. Regulation of Follicular B Cell Differentiation by the Related E26 Transformation-Specific Transcription Factors PU.1, Spi-B, and Spi-C. THE JOURNAL OF IMMUNOLOGY 2010; 185:7374-84. [DOI: 10.4049/jimmunol.1001413] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Mauri C, Blair PA. Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol 2010; 6:636-43. [PMID: 20856268 DOI: 10.1038/nrrheum.2010.140] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Zhang Y, Saha S, Rosenfeld G, Gonzalez J, Pepeljugoski KP, Peeva E. Raloxifene modulates estrogen-mediated B cell autoreactivity in NZB/W F1 mice. J Rheumatol 2010; 37:1646-57. [PMID: 20551107 DOI: 10.3899/jrheum.090911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Estrogen has been found to exacerbate disease activity in murine lupus and to induce a lupus-like syndrome in nonspontaneously autoimmune mice. This has led to the consideration that estrogen may be a risk factor for the development of systemic lupus erythematosus (SLE), and selective estrogen receptor modulators (SERM) may serve to ameliorate lupus activity. We evaluated the effects and mechanism of action of the SERM raloxifene in murine lupus. METHODS Effects of raloxifene on the development of lupus in NZB/W F1 mice were evaluated in the presence and absence of estrogen by assessing the serum DNA reactivity, glomerular IgG deposition and kidney damage, B cell maturation and selection, and activation status of marginal zone and follicular B cells. RESULTS Compared to estradiol-treated mice, mice treated with estradiol and raloxifene had significantly lower serum anti-DNA antibody levels and less kidney damage. These effects of raloxifene were due, at least in part, to antagonism of the influence of estrogen on DNA-reactive B cells. Raloxifene was found to prevent estrogen-mediated suppression of autoreactive B cell elimination at the T1/T2 selection checkpoint, to reduce estrogen-induced CD40 overexpression on follicular B cells, making them less responsive to T cell costimulation, and to ameliorate estrogen-mediated CD22 downregulation on marginal zone B cells, thereby decreasing their responsiveness to B cell antigen receptor-mediated stimuli. CONCLUSION Raloxifene suppressed estrogen-mediated effects on the survival, maturation, and activation of autoreactive B cells in NZB/W F1 mice.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Henderson RB, Grys K, Vehlow A, de Bettignies C, Zachacz A, Henley T, Turner M, Batista F, Tybulewicz VL. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. J Exp Med 2010; 207:837-53. [PMID: 20308364 PMCID: PMC2856036 DOI: 10.1084/jem.20091489] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD- transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection.
Collapse
Affiliation(s)
- Robert B. Henderson
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Katarzyna Grys
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Anne Vehlow
- Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | - Carine de Bettignies
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Agnieszka Zachacz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Tom Henley
- The Babraham Institute, Cambridge CB2 4AT, England, UK
| | - Martin Turner
- The Babraham Institute, Cambridge CB2 4AT, England, UK
| | - Facundo Batista
- Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | - Victor L.J. Tybulewicz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| |
Collapse
|
23
|
Notley CA, Baker N, Ehrenstein MR. Secreted IgM Enhances B Cell Receptor Signaling and Promotes Splenic but Impairs Peritoneal B Cell Survival. THE JOURNAL OF IMMUNOLOGY 2010; 184:3386-93. [DOI: 10.4049/jimmunol.0902640] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Wang JH, Li J, Wu Q, Yang P, Pawar RD, Xie S, Timares L, Raman C, Chaplin DD, Lu L, Mountz JD, Hsu HC. Marginal zone precursor B cells as cellular agents for type I IFN-promoted antigen transport in autoimmunity. THE JOURNAL OF IMMUNOLOGY 2009; 184:442-51. [PMID: 19949066 DOI: 10.4049/jimmunol.0900870] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenic connection of type I IFN and its role in regulating the migration response of Ag delivery by B cells into lymphoid follicles in an autoimmune condition has not been well-identified. Here, we show that there was a significantly larger population of marginal zone precursor (MZ-P) B cells, defined as being IgM(hi)CD1d(hi)CD21(hi)CD23(hi) in the spleens of autoimmune BXD2 mice compared with B6 mice. MZ-P B cells were highly proliferative compared with marginal zone (MZ) and follicular (FO) B cells. The intrafollicular accumulation of MZ-P B cells in proximity to germinal centers (GCs) in BXD2 mice facilitated rapid Ag delivery to the GC area, whereas Ag-carrying MZ B cells, residing predominantly in the periphery, had a lower ability to carry Ag into the GCs. IFN-alpha, generated by plasmacytoid dendritic cells, induced the expression of CD69 and suppressed the sphingosine-1-phosphate-induced chemotactic response, promoting FO-oriented Ag transport by MZ-P B cells. Knockout of type I IFN receptor in BXD2 (BXD2-Ifnalphar(-/-)) mice substantially diffused the intrafollicular MZ-P B cell conglomeration and shifted their location to the FO-MZ border near the marginal sinus, making Ag delivery to the FO interior less efficient. The development of spontaneous GCs was decreased in BXD2-Ifnalphar(-/-) mice. Together, our results suggest that the MZ-P B cells are major Ag-delivery B cells and that the FO entry of these B cells is highly regulated by type I IFN-producing plasmacytoid dendritic cells in the marginal sinus in the spleens of autoimmune BXD2 mice.
Collapse
Affiliation(s)
- John H Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cruickshank MN, Ulgiati D. The role of notch signaling in the development of a normal B‐cell repertoire. Immunol Cell Biol 2009; 88:117-24. [DOI: 10.1038/icb.2009.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark N Cruickshank
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Daniela Ulgiati
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
26
|
Guay HM, Mishra R, Garcea RL, Welsh RM, Szomolanyi-Tsuda E. Generation of protective T cell-independent antiviral antibody responses in SCID mice reconstituted with follicular or marginal zone B cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:518-23. [PMID: 19542462 DOI: 10.4049/jimmunol.0900068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
B cells generated in the bone marrow of adult mice enter the periphery as transitional B cells and subsequently differentiate into one of two phenotypically and functionally distinct subsets, marginal zone (MZ) or follicular (Fo) B cells. Recent reports indicate, however, that in response to environmental cues, such as lymphopenia, mature Fo B cells can change to display phenotypic markers characteristic of MZ B cells. Previously, we found that splenic B cells transferred to SCID mice responded to polyoma virus (PyV) infection with T cell-independent (TI) IgM and IgG secretion, reducing the viral load and protecting mice from the lethal effect of the infection. The contribution of MZ and Fo B cell subsets to this antiviral TI-2 response, however, has not been addressed. In this study, we show that both sort-purified MZ and Fo B cells generate protective TI Ab responses to PyV infection when transferred into SCID mice. Moreover, the transferred Fo B cells in the spleens of the PyV-infected SCID mice change phenotype, with many of them displaying MZ B cell characteristics. These findings demonstrate the plasticity of the B cell subsets in virus-infected hosts and show for the first time that B cells derived exclusively from Fo B cells can effectively function in antiviral TI-2 responses.
Collapse
Affiliation(s)
- Heath M Guay
- Department of Pathology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Cdc42 is a member of the Rho GTPase family that has been implicated in several cell functions including proliferation and migration, but its physiologic role needs to be dissected in each cell type. We achieved B-cell and hematopoietic stem cell deletion of Cdc42 by conditional gene targeting in mice. Deletion of Cdc42 from proB/preB-cell stage significantly blocked B-cell development at T1 and later stages, resulting in reduced mature B-cell populations and reduced antigen-specific immunoglobulin M (IgM), IgG1, and IgG3 production. The Cdc42(-/-) B cells, themselves, were abnormal with impaired proliferation and survival. The mutant B cells were further characterized by a B-cell receptor (BCR) signaling defect with increased Erk and decreased Akt activation, as well as a defect in BCR-mediated B-cell-activating factor (BAFF) receptor up-regulation and subsequent BAFF receptor signaling in mature resting B cells. Surprisingly, Cdc42 was dispensable for stromal cell-derived factor-1alpha (SDF-1alpha)- or B-lymphocyte chemoattractant (BLC)-induced B-cell migration. Finally, loss of Cdc42 from hematopoietic stem cells did not alter common lymphoid progenitor production but severely reduced proB/preB- and immature B-cell populations, indicating that Cdc42 is also involved in B-cell precursor differentiation. These results reveal multifaceted roles of Cdc42 in B-cell development and activation.
Collapse
|
28
|
Xing Y, Li W, Lin Y, Fu M, Li CX, Zhang P, Liang L, Wang G, Gao TW, Han H, Liu YF. The influence of BCR density on the differentiation of natural poly-reactive B cells begins at an early stage of B cell development. Mol Immunol 2009; 46:1120-8. [DOI: 10.1016/j.molimm.2008.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 12/16/2022]
|
29
|
Abstract
The subunit structure of the B-cell antigen receptor (BCR) and its associated compartmentalization of function confer enormous flexibility for generating signals and directing these toward specific and divergent cell fate decisions. Like all the multichain immune recognition receptors discussed in this volume, assembly of these multi-unit complexes sets these receptors apart from almost all other cell surface signal transduction proteins and affords them the ability to participate in almost all of the diverse aspects of, in this case, B-cell biology. We discuss here the structural aspects of the BCR and its associated coreceptors and relate these mechanistically to how BCR signaling can be directed towards specific fate decisions. By doing so, the BCR plays a pivotal role in ensuring the effective and appropriate B-cell response to antigen.
Collapse
Affiliation(s)
- Randall J Brezski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
The BLyS family: toward a molecular understanding of B cell homeostasis. Cell Biochem Biophys 2008; 53:1-16. [PMID: 19034695 DOI: 10.1007/s12013-008-9036-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Indexed: 12/27/2022]
Abstract
The B Lymphocyte Stimulator (BLyS) family of ligands and receptors regulates humoral immunity by controlling B lymphocyte survival and differentiation. Herein, we review the ligands and receptors of this family, their biological functions, and the biochemical processes through which they operate. Pre-immune B lymphocytes rely on BLyS signaling for their survival, whereas antigen experienced B lymphocytes generally interact more avidly with a homologous cytokine, A Proliferation Inducing Ligand (APRIL). The molecular basis for signaling via the three BLyS family receptors reveals complex interplay with other B lymphocyte signaling systems, affording the integration of selective and homeostatic processes. As our understanding of this system advances, molecular targets for manipulating humoral immunity in both health and disease should be revealed.
Collapse
|
31
|
Liu P, Santisteban I, Burroughs LM, Ochs HD, Torgerson TR, Hershfield MS, Rawlings DJ, Scharenberg AM. Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ADA deficient patient. Clin Immunol 2008; 130:162-74. [PMID: 18952502 DOI: 10.1016/j.clim.2008.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
We report detailed genetic and immunologic studies in a patient diagnosed with adenosine deaminase (ADA) deficiency and combined immune deficiency at age 5 years. At the time of diagnosis, although all other lymphocyte subsets were depleted, circulating CD8(+) T cells with a terminally differentiated phenotype were abundant and expressed normal ADA activity due to a reversion mutation in a CD8(+) T cell or precursor. Over the first 9 months of replacement therapy with PEG-ADA, the patient steadily accumulated mature naïve CD4(+) and CD8(+) T cells, as well as CD4(+)/FOXP3(+) regulatory T cells, consistent with restoration of a functional cellular immune system. While CD19(+) naïve B cells also accumulated in response to PEG-ADA therapy, a high proportion of these B cells exhibited an immature surface marker phenotype even after 9 months, and immunization with neoantigen bacteriophage varphiX174 demonstrated a markedly subnormal humoral immune response. Our observations in this single patient have important implications for gene therapy of human ADA deficiency, as they indicate that ADA expression within even a large circulating lymphocyte population may not be sufficient to support adequate immune reconstitution. They also suggest that an immature surface marker phenotype of the peripheral B cell compartment may be a useful surrogate marker for incomplete humoral immune reconstitution during enzyme replacement, and possibly other forms of hematopoietic cell therapies.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pediatrics, University of Washington and Seattle Children's Hospital Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Okamoto H, Yin C, Jagannathan J, Takizawa J, Aoki S, Gläsker S, Rushing EJ, Vortmeyer AO, Oldfield EH, Yamanaka R, Zhuang Z. Proteomic characterization of primary diffuse large B-cell lymphomas in the central nervous system. J Neurosurg 2008; 109:536-46. [PMID: 18759588 DOI: 10.3171/jns/2008/109/9/0536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECT The lack of primary lymphoid tissue within the central nervous system (CNS) confounds our understanding of the pathogenesis of primary CNS lymphomas (PCNSLs). Comparing the protein expression of PCNSLs and sporadic systemic lymphomas (SSLs) provides a useful strategy for identifying a molecular signature that characterizes disease-associated features and provides information regarding tumor initiation and progression. METHODS Seven diffuse large B-cell PCNSLs were selected to undergo 2D gel electrophoresis, and profiled proteomes from these PCNSLs were compared with those from 7 diffuse large B-cell SSLs. Distinguishing proteins were sequenced using mass spectrometry. RESULTS Two-dimensional gel electrophoresis identified an average of 706 proteins from each specimen. Computerized gel analysis and manual reconfirmation revealed a 96% similarity in the proteomes of PCNSLs and SSLs. Comparative analysis identified 9 proteins significantly overexpressed (p < 0.05) and 16 proteins downregulated in PCNSLs. The proteomic findings were further validated using Western blot and immunohistochemical staining. CONCLUSIONS The similarities in proteomic patterns between PCNSLs and SSLs suggest that these tumor types share structural similarities, acquired during differentiation. The ultimate fate of lymphomatous cells (CNS vs systemic) may be related to differentially expressed proteins, which function in homing and host processing. Elucidating the roles of these differentially expressed proteins will prove valuable in understanding the pathogenesis of PCNSL.
Collapse
Affiliation(s)
- Jie Li
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Duan B, Niu H, Xu Z, Sharpe AH, Croker BP, Sobel ES, Morel L. Intrafollicular location of marginal zone/CD1d(hi) B cells is associated with autoimmune pathology in a mouse model of lupus. J Transl Med 2008; 88:1008-20. [PMID: 18607347 PMCID: PMC3731739 DOI: 10.1038/labinvest.2008.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Marginal zone (MZ) B cells contain a large number of autoreactive clones and the expansion of this compartment has been associated with autoimmunity. MZ B cells also efficiently transport blood-borne antigen to the follicles where they activate T cells and differentiate into plasma cells. Using the B6.NZM2410.Sle1.Sle2.Sle3 (B6.TC) model of lupus, we show that the IgM+ CD1d(hi)/MZ B-cell compartment is expanded, and a large number of them reside inside the follicles. Contrary to the peripheral B-cell subset distribution and their activation status, the intrafollicular location of B6.TC IgM+ CD1d(hi)/MZ B cells depends on both bone marrow- and stromal-derived factors. Among the factors responsible for this intrafollicular location, we have identified an increased response to CXCL13 by B6.TC MZ B cells and a decreased expression of VCAM-1 on stromal cells in the B6.TC MZ. However, the reduced number of MZ macrophages observed in B6.TC MZs was independent of the IgM+ CD1d(hi)/B-cell location. B7-2 but not B7-1 deficiency restored IgM+ CD1d(hi)/MZ B-cell follicular exclusion in B6.TC mice, and it correlated with tolerance to dsDNA and a significant reduction of autoimmune pathology. These results suggest that follicular exclusion of IgM+ CD1d(hi)/MZ B cells is an important B-cell tolerance mechanism, and that B7-2 signaling is involved in breaching this tolerance checkpoint.
Collapse
Affiliation(s)
- Biyan Duan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Haitao Niu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zhiwei Xu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Byron P Croker
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA,Pathology and Laboratory Medicine Service, Malcolm Randall VAMC, Gainesville, FL, USA
| | - Eric S Sobel
- Department of Medicine, Division of Rheumatology and Clinical Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
34
|
Carey JB, Moffatt-Blue CS, Watson LC, Gavin AL, Feeney AJ. Repertoire-based selection into the marginal zone compartment during B cell development. ACTA ACUST UNITED AC 2008; 205:2043-52. [PMID: 18710933 PMCID: PMC2526199 DOI: 10.1084/jem.20080559] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Marginal zone (MZ) B cells resemble fetally derived B1 B cells in their innate-like rapid responses to bacterial pathogens, but the basis for this is unknown. We report that the MZ is enriched in “fetal-type” B cell receptors lacking N regions (N−). Mixed bone marrow (BM) chimeras, made with adult terminal deoxynucleotidyl transferase (TdT)+/+ and TdT−/− donor cells, demonstrate preferential repertoire-based selection of N− B cells into the MZ. Reconstitution of irradiated mice with adult TdT+/+ BM reveals that the MZ can replenish N− B cells in adult life via repertoire-based selection and suggest the possibility of a TdT-deficient precursor population in the adult BM. The mixed chimera data also suggest repertoire-based bifurcations into distinct BM and splenic maturation pathways, with mature “recirculating” BM B cells showing a very strong preference for N+ complementarity-determining region (CDR) 3 compared with follicular B cells. Because the T1 and MZ compartments are both the most enriched for N− H-CDR3, we propose a novel direct T1→MZ pathway and identify a potential T1–MZ precursor intermediate. We demonstrate progressive but discontinuous repertoire-based selection throughout B cell development supporting multiple branchpoints and pathways in B cell development. Multiple differentiation routes leading to MZ development may contribute to the reported functional heterogeneity of the MZ compartment.
Collapse
Affiliation(s)
- John B Carey
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Donahue AC, Fruman DA. Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur J Immunol 2007; 37:2923-36. [PMID: 17724683 DOI: 10.1002/eji.200737281] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR), a downstream kinase, are both required for proliferation of splenic B cells. However, the functions of PI3K and mTOR in response to different stimuli and among B cell subsets have not been fully elucidated. We used flow cytometry and magnetic cell sorting to examine the requirement for PI3K and mTOR in responses of splenic B cell subsets to BCR and LPS stimulation. BCR-mediated phosphorylation of Akt and Erk is sensitive to the PI3K catalytic inhibitor wortmannin in both marginal zone (MZ) and follicular (FO) cells. BCR-mediated mTOR activation in both subsets is inhibited by wortmannin, though less strongly in MZ cells. In contrast, LPS-induced mTOR signaling is strikingly resistant to wortmannin in both subsets. Similarly, functional responses to LPS are partially wortmannin resistant yet sensitive to mTOR inhibition by rapamycin. We also observed mitogen-independent mTOR activity that is regulated by nutrient availability, and is significantly elevated in MZ cells relative to FO cells. These data define both similarities and differences in PI3K/mTOR signaling mechanisms in MZ and FO cells, and suggest that mTOR signaling can occur in the absence of PI3K activation to promote B cell responses to LPS.
Collapse
Affiliation(s)
- Amber C Donahue
- Department of Molecular Biology & Biochemistry, and Center for Immunology, University of California Irvine, Irvine, CA 92697-3900, USA
| | | |
Collapse
|
36
|
Miller AT, Sandberg M, Huang YH, Young M, Sutton S, Sauer K, Cooke MP. Production of Ins(1,3,4,5)P4 mediated by the kinase Itpkb inhibits store-operated calcium channels and regulates B cell selection and activation. Nat Immunol 2007; 8:514-21. [PMID: 17417640 DOI: 10.1038/ni1458] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 03/15/2007] [Indexed: 02/07/2023]
Abstract
Antigen receptor-mediated production of inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) in lymphocytes triggers the release of Ca2+ from intracellular stores; this release of Ca2+ results in the opening of store-operated Ca2+ channels in the plasma membrane. Here we report that mice lacking Ins(1,4,5)P3 3-kinase B (Itpkb), which converts Ins(1,4,5)P3 to inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), had impaired B lymphocyte development and defective immunoglobulin G3 antibody responses to a T lymphocyte-independent antigen. Itpkb-deficient B lymphocytes had the phenotypic and functional features of tolerant B lymphocytes and showed enhanced activity of store-operated Ca2+ channels after B lymphocyte receptor stimulation, which was reversed by the provision of exogenous Ins(1,3,4,5)P4. Our data identify Itpkb and its product Ins(1,3,4,5)P4 as inhibitors of store-operated Ca2+ channels and crucial regulators of B cell selection and activation.
Collapse
Affiliation(s)
- Andrew T Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhang P, Li W, Wang Y, Hou L, Xing Y, Qin H, Wang J, Liang Y, Han H. Identification of CD36 as a new surface marker of marginal zone B cells by transcriptomic analysis. Mol Immunol 2007; 44:332-7. [PMID: 16616782 DOI: 10.1016/j.molimm.2006.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 01/02/2023]
Abstract
Follicular (FO) B cells and marginal zone (MZ) B cells belong to the mature B cell population in spleen of mice. To identify new surface markers of these mature B cell subsets, we compared gene expression profiles of FO and MZ B cells by DNA microarray using FACS-sorted mouse FO and MZ B cells. From 14,000 mouse genes, 27 membrane proteins were expressed mainly in MZ B cells while another 22 membrane proteins expressed largely in FO B cells. Using FACS analysis, we identified that CD36, CD68, and CD49e were expressed on MZ B cells but not on FO B cells. In addition, using semi-quantitative PCR, we found that the mRNA of CD131 were much more abundant in MZ B cells. These results revealed new phenotypic properties of MZ and FO B cells, and would facilitate further studies in the differentiation and functions of these mature B cells.
Collapse
Affiliation(s)
- Ping Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, and Department of Dermatology, Xijng Hospital, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duan B, Croker BP, Morel L. Lupus resistance is associated with marginal zone abnormalities in an NZM murine model. J Transl Med 2007; 87:14-28. [PMID: 17170739 DOI: 10.1038/labinvest.3700497] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The NZM2410 and NZM TAN (TAN) are two of 27 inbred strains derived from an intercross between the NZW and NZB strains. NZM2410 mice develop a highly penetrant lupus nephritis mediated by three susceptibility loci, Sle1, Sle2 and Sle3. These three loci have been combined on a C57BL/6 background in a triple congenic strain that reconstitutes the NZM2410 autoimmune phenotype. Remarkably, inspite of the presence of Sle1, Sle2 and Sle3, TAN mice display a mild autoimmune phenotype reminiscent of NZW. Contrary to the lupus-prone strains, the majority of TAN CD4(+) T cells are in a naïve-inactivated stage. TAN mice show B-cell developmental abnormalities similar to lupus-prone mice, such an accumulation of transitional T1 cells and peritoneal B-1a cells. TAN mice show, however, a unique expansion of the splenic marginal zone, in which B cells express high levels of CD5 and CD9, fail to migrate to the follicles in response to LPS, and show sub-optimal binding of T-independent type 2 antigens. Therefore, TAN mice present a functional silencing of marginal zone B cells, which have been previously implicated with autoimmune process. The TAN strain thus provides a novel model for the analysis of the genetic determinants of B-cell autoreactivity.
Collapse
Affiliation(s)
- Biyan Duan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275, USA
| | | | | |
Collapse
|
39
|
Li W, Fu M, An JG, Xing Y, Zhang P, Zhang X, Wang YC, Li CX, Tian R, Su WJ, Guan HH, Wang G, Gao TW, Han H, Liu YF. Host defence againstC. albicansinfections in IgH transgenic mice with VHderived from a natural anti-keratin antibody. Cell Microbiol 2006; 9:306-15. [PMID: 16925788 DOI: 10.1111/j.1462-5822.2006.00786.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungal infections have been increasing and life-threatening in recent years, but host immune responses, especially the humoral immunity, to fungi have not been fully understood. In the present study, we report that natural antibodies from unimmunized mice bind to Candida albicans. We established a monoclonal natural antibody, 3B4, which recognized a surface antigen located at germ tubes of C. albicans. The 3B4 antibody protected mice from C. albicans-induced death in passive immunization, by mechanisms involving suppressing germ tube formation and modulating phagocytosis. Interestingly, 3B4 also bound to a self-antigen keratin. To further study the generation and anti-C. albicans activities of natural antibodies in vivo, we constructed a mu chain transgenic mouse (TgV(H)3B4) using the V(H) gene from 3B4. TgV(H)3B4 had elevated serum anti-keratin/C. albicans IgM, and were resistant to C. albicans infections. Analyses of B cell development showed that in TgV(H)3B4, B cells secreting the anti-keratin/C. albicans antibodies were enriched in the B1 B cell compartment. Our findings reveal an important role of keratin-reactive natural antibodies in anti-C. albicans immune responses, and suggest that keratin may function in selecting B cells into the B1 B cell compartment, where natural antibodies are made to fight fungal infections.
Collapse
Affiliation(s)
- Wei Li
- Department of Dermatology, Xijing Hospital, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Zhang P, Li W, Hou L, Wang J, Liang Y, Han H. Mouse follicular and marginal zone B cells show differential expression of Dnmt3a and sensitivity to 5′-azacytidine. Immunol Lett 2006; 105:174-9. [PMID: 16584789 DOI: 10.1016/j.imlet.2006.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/14/2006] [Accepted: 02/19/2006] [Indexed: 12/31/2022]
Abstract
Mature B cells in the spleen of mouse and human comprise of two main subsets, the follicular (Fo) B cells and the marginal zone (MZ) B cells. In this study, we report that Fo and MZ B cells express different levels of DNA methyltransferase Dnmt3a. By using RT-PCR and immunohistochemistry, we found that Fo B cells expressed high level of Dnmt3a while MZ B cells expressed little. Treatment of mice by in vivo administration of 5'-azacytidine, an inhibitor of DNA methyltransferases, induced B cell loss in both the bone marrow and the spleen. We noticed that this treatment resulted in a much faster and more severe disappearance of Fo B cells than MZ B cells in the spleen. Further analysis showed that MZ progenitors increased significantly in mice treated with 5'-azacytidine. These results suggest that epigenetic mechanisms involving Dnmt3a might participate in the development of B cells including the differentiation of Fo B cells and MZ B cells in the periphery.
Collapse
Affiliation(s)
- Yaochun Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Kraal G, Mebius R. New insights into the cell biology of the marginal zone of the spleen. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:175-215. [PMID: 16861066 PMCID: PMC7112368 DOI: 10.1016/s0074-7696(06)50005-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the marginal zone of the spleen the bloodstream passes through an open system of reticular cells and fibers in which various myeloid and lymphoid cells are located. Macrophages in this region are well equipped to recognize pathogens and filter the blood by virtue of unique combinations of pattern recognition receptors. They interact with a specific set of B cells that can be found only in the marginal zone and that are able to react rapidly to bacterial antigens in particular. This combination of strategically located cells is an important factor in our defense against blood-borne pathogens. New data on the development of the marginal zone itself and the marginal zone B cells are reviewed and discussed in light of the function of the spleen in host defense.
Collapse
Affiliation(s)
- Georg Kraal
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|