1
|
Bae JM. Introduction of Vaccinomics to Develop Personalized Vaccines in Light of Changes in the Usage of Hantaan Virus Vaccine (Hantavax®) in Korea. J Prev Med Public Health 2019; 52:277-280. [PMID: 31588696 PMCID: PMC6780290 DOI: 10.3961/jpmph.19.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023] Open
Abstract
The Ministry of Food and Drug Safety of Korea made an official announcement in March 2018 that the total number of inoculations of Hantaan virus vaccine (Hantavax®) would change from 3 to 4. Some aspects of this decision remain controversial. Based on the characteristics of Hantaan virus (HTNV) and its role in the pathogenesis of hemorrhagic fever with renal syndrome, it might be difficult to develop an effective and safe HTNV vaccine through the isolate-inactivate-inject paradigm. With the development of high-throughput ‘omics’ technologies in the 21st century, vaccinomics has been introduced. While the goal of vaccinomics is to develop equations to describe and predict the immune response, it could also serve as a tool for developing new vaccine candidates and individualized approaches to vaccinology. Thus, the possibility of applying the innovative field of vaccinomics to develop a more effective and safer HTNV vaccine should be considered.
Collapse
Affiliation(s)
- Jong-Myon Bae
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
2
|
Abrams EJ, Ananworanich J, Archary M, Ngongondo M, Brouwers P. Propelling the Pediatric HIV Therapeutic Agenda With Science, Innovation, and Collaboration. J Acquir Immune Defic Syndr 2018; 78 Suppl 1:S32-S39. [PMID: 29994918 PMCID: PMC6044456 DOI: 10.1097/qai.0000000000001747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND A number of well-described obstacles to the pediatric therapeutic agenda have resulted in substantial delays in the introduction of new medications, formulations, strategies, and approaches to treat infants, children, and adolescents living with HIV. SETTING Global landscape. METHODS The authors will provide a summary of current and emerging initiatives to accelerate the pediatric therapeutic agenda including illustrative case studies of innovations and scientific discovery in diagnosis and treatment of very young children with HIV infection. RESULTS The challenges posed by rapid physiologic and developmental changes that characterize the trajectory of childhood as well as the complex regulatory and fiscal milieu of HIV therapeutics have hampered pediatric HIV therapeutic research. Recent efforts to accelerate this agenda include prioritizing agents and formulations, defining dosing by weight bands, applying innovative study designs, synergizing work across research networks to achieve common goals, and the establishment of a global prioritized research agenda. A case study of initiatives to diagnose and effectively treat newborns and infants will illustrate the critical role of basic science research and novel approaches to study design and implementation that are informing global efforts to end AIDS. CONCLUSIONS A pediatric therapeutic agenda informed by basic science and achieved through innovation and global cooperation is essential to achieve an AIDS-free generation.
Collapse
Affiliation(s)
- Elaine J. Abrams
- ICAP at Columbia, Mailman School of Public Health, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
- Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moherndran Archary
- Paediatric Infectious Diseases Unit, King Edward VIII Hospital, University of KwaZulu Natal, Durban, South Africa
| | | | - Pim Brouwers
- Division of AIDS Research, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Dérian N, Bellier B, Pham HP, Tsitoura E, Kazazi D, Huret C, Mavromara P, Klatzmann D, Six A. Early Transcriptome Signatures from Immunized Mouse Dendritic Cells Predict Late Vaccine-Induced T-Cell Responses. PLoS Comput Biol 2016; 12:e1004801. [PMID: 26998760 PMCID: PMC4801398 DOI: 10.1371/journal.pcbi.1004801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023] Open
Abstract
Systems biology offers promising approaches for identifying response-specific signatures to vaccination and assessing their predictive value. Here, we designed a modelling strategy aiming to predict the quality of late T-cell responses after vaccination from early transcriptome analysis of dendritic cells. Using standardized staining with tetramer, we first quantified antigen-specific T-cell expansion 5 to 10 days after vaccination with one of a set of 41 different vaccine vectors all expressing the same antigen. Hierarchical clustering of the responses defined sets of high and low T cell response inducers. We then compared these responses with the transcriptome of splenic dendritic cells obtained 6 hours after vaccination with the same vectors and produced a random forest model capable of predicting the quality of the later antigen-specific T-cell expansion. The model also successfully predicted vector classification as low or strong T-cell response inducers of a novel set of vaccine vectors, based on the early transcriptome results obtained from spleen dendritic cells, whole spleen and even peripheral blood mononuclear cells. Finally, our model developed with mouse datasets also accurately predicted vaccine efficacy from literature-mined human datasets. Vaccines are designed to elicit effective immune responses against antigens. The various vector platforms used in vaccine development are diverse and complex, rendering the selection of promising vaccines vector challenging. We have designed a modeling strategy that predicts the propensity of vaccine vectors to elicit strong late T-cell responses using transcriptome material obtained 6 hours after vaccination. Our model, designed with mouse datasets, also predicted vector efficacy from mined human data. Thus, molecular signatures obtained 6 hours after vaccination can predict vaccine efficacy at 2 weeks post vaccination, which should help in vaccine development.
Collapse
Affiliation(s)
- Nicolas Dérian
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology, Immunopathology, Immunotherapy, Paris, France
- AP-HP, Clinical Investigation Center in Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMRS 959, "Immunology, Immunopathology, Immunotherapy", Paris, France
| | - Bertrand Bellier
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology, Immunopathology, Immunotherapy, Paris, France
- AP-HP, Clinical Investigation Center in Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMRS 959, "Immunology, Immunopathology, Immunotherapy", Paris, France
| | - Hang Phuong Pham
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology, Immunopathology, Immunotherapy, Paris, France
- INSERM, UMRS 959, "Immunology, Immunopathology, Immunotherapy", Paris, France
| | - Eliza Tsitoura
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Dorothea Kazazi
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Christophe Huret
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology, Immunopathology, Immunotherapy, Paris, France
- INSERM, UMRS 959, "Immunology, Immunopathology, Immunotherapy", Paris, France
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology, Immunopathology, Immunotherapy, Paris, France
- AP-HP, Clinical Investigation Center in Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMRS 959, "Immunology, Immunopathology, Immunotherapy", Paris, France
- * E-mail: (DK); (AS)
| | - Adrien Six
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology, Immunopathology, Immunotherapy, Paris, France
- AP-HP, Clinical Investigation Center in Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMRS 959, "Immunology, Immunopathology, Immunotherapy", Paris, France
- * E-mail: (DK); (AS)
| |
Collapse
|
4
|
Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0146. [PMID: 25964458 DOI: 10.1098/rstb.2014.0146] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccination has been tremendously successful saving lives and preventing infections. However, the development of vaccines against global pandemics such as HIV, malaria and tuberculosis has been obstructed by several challenges. A major challenge is the lack of knowledge about the correlates and mechanisms of protective immunity. Recent advances in the application of systems biological approaches to analyse immune responses to vaccination in humans are beginning to yield new insights about mechanisms of vaccine immunity, and to define molecular signatures, induced rapidly after vaccination, that correlate with and predict vaccine induced immunity. Here, we review these advances and discuss the potential of this systems vaccinology approach in defining novel correlates of protection in clinical trials, and in infection-induced 'experimental challenge models' in humans.
Collapse
Affiliation(s)
- Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
5
|
Abstract
While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.
Collapse
Affiliation(s)
| | - Helen McShane
- a The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
6
|
Zak DE, Aderem A. Systems integration of innate and adaptive immunity. Vaccine 2015; 33:5241-8. [PMID: 26102534 DOI: 10.1016/j.vaccine.2015.05.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022]
Abstract
The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies.
Collapse
Affiliation(s)
- Daniel E Zak
- The Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Alan Aderem
- The Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Guggino G, Orlando V, Cutrera S, La Manna MP, Di Liberto D, Vanini V, Petruccioli E, Dieli F, Goletti D, Caccamo N. Granzyme A as a potential biomarker of Mycobacterium tuberculosis infection and disease. Immunol Lett 2015; 166:87-91. [PMID: 26051682 DOI: 10.1016/j.imlet.2015.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 01/21/2023]
Abstract
Cytotoxic molecules such as granulysin, perforin and granzymes produced by cytolytic T cells directly contribute to immune defense against tuberculosis (TB). In search for novel TB biomarkers, we have evaluated the levels of granzyme A in plasma obtained from QuantiFERON-TB Gold In tube (QFT-IT) assays from patients with active TB disease and subjects with latent TB infection (LTBI). Granzyme A serum levels in TB patients were significantly lower than values found in LTBI subjects even after subtraction of the unstimulated levels from the antigen-stimulated responses. The receiver operator characteristics (ROC) curve analysis comparing TB patients and LTBI groups, showed that at a cut-off value of granzyme A of <3.425pg/ml, the sensitivity and the specificity of the assay were 29.41% and 94.74%, respectively. Our results suggest that granzyme A could be considered another biomarker of TB, that can be used, other than IFN-γ, to discriminate between patients with active TB and LTBI subjects in a well characterized cohort of confirmed Mycobacterium tuberculosis-infected individuals.
Collapse
Affiliation(s)
- Giuliana Guggino
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Stella Cutrera
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | | | | | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Delia Goletti
- Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy.
| |
Collapse
|
8
|
Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics 2015; 16:47-59. [PMID: 25937813 PMCID: PMC4412964 DOI: 10.2174/1389202916666141223220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccines represent the most successful and sustainable tactic to prevent and counteract infection. A vaccine generally improves immunity to a particular disease upon administration by inducing specific protective and efficient immune responses in all of the receiving population. The main known factors influencing the observed heterogeneity for immune re-sponses induced by vaccines are gender, age, co-morbidity, immune system, and genetic background. This review is mainly focused on the genetic status effect to vaccine immune responses and how this could contribute to the development of novel vaccine candidates that could be better directed and predicted relative to the genetic history of an individual and/or population. The text offers a brief history of vaccinology as a field, a description of the genetic status of the most relevant and studied genes and their functionality and correlation with exposure to specific vaccines; followed by an inside look into autoimmunity as a concern when designing vaccines as well as perspectives and conclusions looking towards an era of personalized and predictive vaccinology instead of a one size fits all approach.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia ; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia
| |
Collapse
|
9
|
Abstract
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.
Collapse
|
10
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
11
|
Poland GA, Ovsyannikova IG, Kennedy RB, Lambert ND, Kirkland JL. A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol 2014; 29:62-8. [PMID: 24820347 DOI: 10.1016/j.coi.2014.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/13/2023]
Abstract
Aging can lead to immunosenescence, which dramatically impairs the hosts' ability to develop protective immune responses to vaccine antigens. Reasons for this are not well understood. This topic's importance is reflected in the increases in morbidity and mortality due to infectious diseases among elderly persons, a population growing in size globally, and the significantly lower adaptive immune responses generated to vaccines in this population. Here, we endeavor to summarize the existing data on the genetic and immunologic correlates of immunosenescence with respect to vaccine response. We cover how the application of systems biology can advance our understanding of vaccine immunosenescence, with a view toward how such information could lead to strategies to overcome the lower immunogenicity of vaccines in the elderly.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | - James L Kirkland
- Robert & Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Dorhoi A, Iannaccone M, Maertzdorf J, Nouailles G, Weiner J, Kaufmann SHE. Reverse translation in tuberculosis: neutrophils provide clues for understanding development of active disease. Front Immunol 2014; 5:36. [PMID: 24550920 PMCID: PMC3913996 DOI: 10.3389/fimmu.2014.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/22/2014] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is a major health issue globally. Although typically the disease can be cured by chemotherapy in all age groups, and prevented in part in newborn by vaccination, general consensus exists that development of novel intervention measures requires better understanding of disease mechanisms. Human TB is characterized by polarity between host resistance as seen in 2 billion individuals with latent TB infection and susceptibility occurring in 9 million individuals who develop active TB disease every year. Experimental animal models often do not reflect this polarity adequately, calling for a reverse translational approach. Gene expression profiling has allowed identification of biomarkers that discriminate between latent infection and active disease. Functional analysis of most relevant markers in experimental animal models can help to better understand mechanisms driving disease progression. We have embarked on in-depth characterization of candidate markers of pathology and protection hereby harnessing mouse mutants with defined gene deficiencies. Analysis of mutants deficient in miR-223 expression and CXCL5 production allowed elucidation of relevant pathogenic mechanisms. Intriguingly, these deficiencies were linked to aberrant neutrophil activities. Our findings point to a detrimental potential of neutrophils in TB. Reciprocally, measures that control neutrophils should be leveraged for amelioration of TB in adjunct to chemotherapy.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marco Iannaccone
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Geraldine Nouailles
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|