1
|
Chen R, Lin Q, Tang H, Dai X, Jiang L, Cui N, Li X. PD-1 immunology in the kidneys: a growing relationship. Front Immunol 2024; 15:1458209. [PMID: 39507530 PMCID: PMC11537962 DOI: 10.3389/fimmu.2024.1458209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In recent years, knowledge regarding immune regulation has expanded rapidly, and major advancements have been made in immunotherapy for immune-associated disorders, particularly cancer. The programmed cell death 1 (PD-1) pathway is a cornerstone in immune regulation. It comprises PD-1 and its ligands mediating immune tolerance mechanisms and immune homeostasis. Accumulating evidence demonstrates that the PD-1 axis has a crucial immunosuppressive role in the tumor microenvironment and autoimmune diseases. PD-1 receptors and ligands on immune cells and renal parenchymal cells aid in maintaining immunological homeostasis in the kidneys. Here, we present a comprehensive review of PD-1 immunology in various kidney disorders, including renal cell carcinoma, glomerulonephritis, kidney transplantation, renal aging, and renal immune-related adverse events secondary to PD-1 immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningxun Cui
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Rao Y, Qiu K, Song Y, Mao M, Feng L, Cheng D, Li J, Zhang Z, Zhang Y, Shao X, Pang W, Wang Y, Chen X, Jiang C, Wu S, Yu S, Liu J, Wang H, Peng X, Yang L, Chen L, Mu X, Zheng Y, Xu W, Liu G, Chen F, Yu H, Zhao Y, Ren J. The diversity of inhibitory receptor co-expression patterns of exhausted CD8 + T cells in oropharyngeal carcinoma. iScience 2024; 27:109668. [PMID: 38655196 PMCID: PMC11035373 DOI: 10.1016/j.isci.2024.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Exhausted CD8+ T cells (Texs) are characterized by the expression of various inhibitory receptors (IRs), whereas the functional attributes of these co-expressed IRs remain limited. Here, we systematically characterized the diversity of IR co-expression patterns in Texs from both human oropharyngeal squamous cell carcinoma (OPSCC) tissues and syngeneic OPSCC model. Nearly 60% of the Texs population co-expressed two or more IRs, and the number of co-expressed IRs was positively associated with superior exhaustion and cytotoxicity phenotypes. In OPSCC patients, programmed cell death-1 (PD-1) blockade significantly enhanced PDCD1-based co-expression with other IR genes, whereas dual blockades of PD-1 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) significantly upregulated CTLA4-based co-expression with other IR genes. Collectively, our findings demonstrate that highly diverse IR co-expression is a leading feature of Texs and represents their functional states, which might provide essential clues for the rational selection of immune checkpoint inhibitors in treating OPSCC.
Collapse
Affiliation(s)
- Yufang Rao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Song
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan Feng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danni Cheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyan Zhang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuyang Zhang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Shao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wendu Pang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Chuanhuan Jiang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Sisi Wu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Shuaishuai Yu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China
| | - Li Chen
- MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China
| | - Xiaosong Mu
- Langzhong People’s Hospital, Nanchong, Sichuan, China
| | - Yongbo Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, Toronto, ON, Canada
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, and Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fei Chen
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
4
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
5
|
Immunotherapy and immunoengineering for breast cancer; a comprehensive insight into CAR-T cell therapy advancements, challenges and prospects. Cell Oncol (Dordr) 2022; 45:755-777. [PMID: 35943716 DOI: 10.1007/s13402-022-00700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly prevalent solid cancer with a high-rise infiltration of immune cells, turning it into a significant candidate for tumor-specific immunotherapies. Chimeric antigen receptor (CAR)-T cells are emerging as immunotherapeutic tools with genetically engineered receptors to efficiently recognize and attack tumor cells that express specific target antigens. Technological advancements in CAR design have provided five generations of CAR-T cells applicable to a wide range of cancer patients while boosting CAR-T cell therapy safety. However, CAR-T cell therapy is ineffective against breast cancer because of the loss of specified antigens, the immunosuppressive nature of the tumor and CAR-T cell-induced toxicities. Next-generation CAR-T cells actively pass through the tumor vascular barriers, persist for extended periods and disrupt the tumor microenvironment (TME) to block immune escape. CONCLUSION CAR-T cell therapy embodies advanced immunotherapy for BC, but further pre-clinical and clinical assessments are recommended to achieve maximized efficiency and safety.
Collapse
|
6
|
Pagliano O, Morrison RM, Chauvin JM, Banerjee H, Davar D, Ding Q, Tanegashima T, Gao W, Chakka SR, DeBlasio R, Lowin A, Kara K, Ka M, Zidi B, Amin R, Raphael I, Zhang S, Watkins SC, Sander C, Kirkwood JM, Bosenberg M, Anderson AC, Kuchroo VK, Kane LP, Korman AJ, Rajpal A, West SM, Han M, Bee C, Deng X, Schebye XM, Strop P, Zarour HM. Tim-3 mediates T cell trogocytosis to limit antitumor immunity. J Clin Invest 2022; 132:e152864. [PMID: 35316223 PMCID: PMC9057587 DOI: 10.1172/jci152864] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) negatively regulates innate and adaptive immunity in cancer. To identify the mechanisms of Tim-3 in cancer immunity, we evaluated the effects of Tim-3 blockade in human and mouse melanoma. Here, we show that human programmed cell death 1-positive (PD-1+) Tim-3+CD8+ tumor-infiltrating lymphocytes (TILs) upregulate phosphatidylserine (PS), a receptor for Tim-3, and acquire cell surface myeloid markers from antigen-presenting cells (APCs) through transfer of membrane fragments called trogocytosis. Tim-3 blockade acted on Tim-3+ APCs in a PS-dependent fashion to disrupt the trogocytosis of activated tumor antigen-specific CD8+ T cells and PD-1+Tim-3+ CD8+ TILs isolated from patients with melanoma. Tim-3 and PD-1 blockades cooperated to disrupt trogocytosis of CD8+ TILs in 2 melanoma mouse models, decreasing tumor burden and prolonging survival. Deleting Tim-3 in dendritic cells but not in CD8+ T cells impeded the trogocytosis of CD8+ TILs in vivo. Trogocytosed CD8+ T cells presented tumor peptide-major histocompatibility complexes and became the target of fratricide T cell killing, which was reversed by Tim-3 blockade. Our findings have uncovered a mechanism Tim-3 uses to limit antitumor immunity.
Collapse
Affiliation(s)
| | - Robert M. Morrison
- Department of Medicine and UPMC Hillman Cancer Center
- Department of Computational and Systems Biology, School of Medicine
| | | | | | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center
| | - Quanquan Ding
- Department of Medicine and UPMC Hillman Cancer Center
| | | | - Wentao Gao
- Department of Medicine and UPMC Hillman Cancer Center
| | | | | | - Ava Lowin
- Department of Medicine and UPMC Hillman Cancer Center
| | - Kevin Kara
- Department of Medicine and UPMC Hillman Cancer Center
| | - Mignane Ka
- Department of Medicine and UPMC Hillman Cancer Center
| | - Bochra Zidi
- Department of Medicine and UPMC Hillman Cancer Center
| | - Rada Amin
- Department of Medicine and UPMC Hillman Cancer Center
| | - Itay Raphael
- Department of Medicine and UPMC Hillman Cancer Center
| | - Shuowen Zhang
- Department of Medicine and UPMC Hillman Cancer Center
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cindy Sander
- Department of Medicine and UPMC Hillman Cancer Center
| | | | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Alan J. Korman
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Arvind Rajpal
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Sean M. West
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Minhua Han
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Christine Bee
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Xiaodi Deng
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Xiao Min Schebye
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Pavel Strop
- Biologics Discovery California, Bristol Myers Squibb, Redwood City, California, USA
| | - Hassane M. Zarour
- Department of Medicine and UPMC Hillman Cancer Center
- Department of Immunology, and
| |
Collapse
|
7
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y, Jiang K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front Immunol 2021; 12:683332. [PMID: 34093586 PMCID: PMC8176033 DOI: 10.3389/fimmu.2021.683332] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jiang Y, Lv X, Ge X, Qu H, Zhang Q, Lu K, Lu Y, Xue C, Zhang L, Wang X. Wilms tumor gent 1 (WT1)-specific adoptive immunotherapy in hematologic diseases. Int Immunopharmacol 2021; 94:107504. [PMID: 33657524 DOI: 10.1016/j.intimp.2021.107504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
As an attractive tumor-associated antigen (TAA), Wilms tumor gene 1 (WT1) is usually overexpressed in malignant hematological diseases. In recent years, WT1-specific adoptive immunotherapy has been the "hot spot" for tumor treatment. The main immunotherapeutic techniques associated with WT1 include WT1-specific cytotoxic T lymphocytes (CTLs), vaccine, and T cell receptor (TCR) gene therapy. WT1-based adoptive immunotherapy exhibited promising anti-tumorous effect with tolerable safety. There are still many limitations needed to be improved including the weak immunogenetics of WT1, immune tolerance, and short persistence of the immune response. In this review, we summarized the progress of productive technologies and the clinical or preclinical investigations of WT1-specific immunotherapy in hematological diseases.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Huiting Qu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qian Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yingxue Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Chao Xue
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|