1
|
Ruze R, Chen Y, Song J, Xu R, Yin X, Xu Q, Wang C, Zhao Y. Enhanced cytokine signaling and ferroptosis defense interplay initiates obesity-associated pancreatic ductal adenocarcinoma. Cancer Lett 2024; 601:217162. [PMID: 39127339 DOI: 10.1016/j.canlet.2024.217162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Obesity is a significant risk factor for various cancers, including pancreatic cancer (PC), but the underlying mechanisms are still unclear. In our study, pancreatic ductal epithelial cells were cultured using serum from human subjects with diverse metabolic statuses, revealing that serum from patients with obesity alters inflammatory cytokine signaling and ferroptosis, where a mutual enhancement between interleukin 34 (IL-34) expression and ferroptosis defense was observed in these cells. Notably, oncogenic KRASG12D amplified their interaction and this leads to the initiation of pancreatic ductal adenocarcinoma (PDAC) in diet-induced obese mice via macrophage-mediated immunosuppression. Single-cell RNA sequencing (scRNA-seq) of human samples showed that cytokine signaling, ferroptosis defense, and immunosuppression are correlated with the patients' body mass index (BMI) during PDAC progression. Our findings provide a mechanistic link between obesity, inflammation, ferroptosis defense, and pancreatic cancer, suggesting novel therapeutic targets for the prevention and treatment of obesity-associated PDAC.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Chengcheng Wang
- General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China; Medical Research Center, PUMCH, CAMS&PUMC, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| |
Collapse
|
2
|
Li X, Poire A, Jeong KJ, Zhang D, Ozmen TY, Chen G, Sun C, Mills GB. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer. Nat Commun 2024; 15:4485. [PMID: 38802355 PMCID: PMC11130309 DOI: 10.1038/s41467-024-48637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tugba Yildiran Ozmen
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Tang F, Hou XF, Cheng Y, Liu Y, Sun J, Liu HY, Lv LP, Fu L. Longitudinal associations between serum IL-34 with severity and prognosis in community-acquired pneumonia patients. Respir Investig 2024; 62:223-230. [PMID: 38218098 DOI: 10.1016/j.resinv.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Interleukin-34 (IL-34) is a hematopoietic cytokine and a ligand of colony-stimulating factor 1 receptor (CSF-1R). Numerous studies have demonstrated that IL-34 is involved in several inflammatory diseases. Nevertheless, the role of IL-34 is obscure in community-acquired pneumonia (CAP) patients. This research aimed to assess the associations of serum IL-34 with severity and prognosis in CAP patients through a longitudinal study. METHODS CAP patients and healthy volunteers were recruited. Peripheral blood samples were collected. Serum IL-34 and inflammatory cytokines were tested by enzyme linked immunosorbent assay (ELISA). Demographic characteristics and clinical information were acquired through electronic medical records. RESULTS Serum IL-34 was elevated in CAP patients compared with healthy volunteers. The content of serum IL-34 was gradually upregulated with increased CAP severity scores. Mixed logistic and linear regression models suggested that serum IL-34 elevation was associated with increased PSI and SMART-COP scores. Correlative analysis found that serum IL-34 was positively correlated with inflammatory cytokines among CAP patients. A longitudinal study indicated that higher serum IL-34 at admission elevated the risks of mechanical ventilation and death during hospitalization. Serum IL-34 had a higher predictive capacity for death than CAP severity scores. CONCLUSION There are prominently positive dose-response associations between serum IL-34 at admission with the severity and poor prognosis, suggesting that IL-34 is implicated in the occurrence and development of CAP. Serum IL-34 may serve as a biomarker to forecast disease progression and poor prognosis in CAP patients.
Collapse
Affiliation(s)
- Fei Tang
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, Anhui, 230022, China
| | - Xue-Feng Hou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yu Cheng
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, Anhui, 230022, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Hong-Yan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Li-Ping Lv
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, Anhui, 230022, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
4
|
Yang K, Ying P, Sun B. Interleukin-34 is more suitable than macrophage colony-stimulating factor for predicting liver significant fibrosis in patients with chronic hepatitis B. Scand J Gastroenterol 2024; 59:78-84. [PMID: 37698305 DOI: 10.1080/00365521.2023.2254438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
AIMS Interleukin-34 (IL-34) and macrophage colony-stimulating factor (CSF-1) have similar functions, such as promoting the formation of liver fibrosis. This study aimed to evaluate and compare the diagnostic value of serum IL-34 and CSF-1 for significant liver fibrosis in patients with chronic hepatitis B (CHB). METHODS A total of 369 CHB patients, consisting of 208 HBeAg-negative patients and 161 HBeAg-positive patients, were enrolled in this study. Additionally, 72 healthy individuals served as healthy controls (HCs). Serum levels of IL-34 and CSF-1 were measured using the enzyme-linked immunosorbent assay method. Liver fibrosis grades were assessed using the modified Scheuer scoring system. RESULTS Serum IL-34 and CSF-1 levels exhibited significant elevation in both HBeAg-negative and HBeAg-positive patients in comparison to HCs (p < 0.001). IL-34 emerged as an independent factor linked to significant liver fibrosis, whereas CSF-1 did not exhibit such an association. Receiver operating characteristic (ROC) analysis indicated higher areas under the curves (AUCs) for IL-34 (0.814, p < 0.001 and 0.673, p < 0.001) when diagnosing significant liver fibrosis in HBeAg-negative and HBeAg-positive patients, respectively, as opposed to CSF-1 (0.602, p < 0.001; 0.619, p = 0.385). Within the HBeAg-negative patient subgroup, the AUC for IL-34 surpassed that of FIB-4 (p = 0.009) and APRI (p = 0.045). CONCLUSION Serum IL-34 has the potential to be a straightforward and practical biomarker that demonstrates superior performance to serum CSF-1 in the diagnosis of significant liver fibrosis in CHB patients, especially within the HBeAg-negative patients.
Collapse
Affiliation(s)
- Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Pan Ying
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Beibei Sun
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Zhang D, Cui X, Li Y, Wang R, Wang H, Dai Y, Ren Q, Wang L, Zheng G. Sox13 and M2-like leukemia-associated macrophages contribute to endogenous IL-34 caused accelerated progression of acute myeloid leukemia. Cell Death Dis 2023; 14:308. [PMID: 37149693 PMCID: PMC10164149 DOI: 10.1038/s41419-023-05822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Interleukin 34 (IL-34) mainly plays physiologic and pathologic roles through the sophisticated multi-ligand signaling system, macrophage colony-stimulating factor (M-CSF, CSF-1)/IL-34-CSF-1R axis, which exhibits functional redundancy, tissue-restriction and diversity. This axis is vital for the survival, differentiation and function of monocytic lineage cells and plays pathologic roles in a broad range of diseases. However, the role of IL-34 in leukemia has not been established. Here MLL-AF9 induced mouse acute myeloid leukemia (AML) model overexpressing IL-34 (MA9-IL-34) was used to explore its role in AML. MA9-IL-34 mice exhibited accelerated disease progression and short survival time with significant subcutaneous infiltration of AML cells. MA9-IL-34 cells showed increased proliferation. In vitro colony forming assays and limiting dilution transplantation experiments demonstrated that MA9-IL-34 cells had elevated leukemia stem cell (LSC) levels. Gene expression microarray analysis revealed a panel of differential expressed genes including Sex-determining region Y (SRY)-box 13 (Sox13). Furthermore, a positive correlation between the expressions of IL-34 and Sox13 was detected human datasets. Knockdown of Sox13 rescued the enhanced proliferation, high LSC level and subcutaneous infiltration in MA9-IL-34 cells. Moreover, more leukemia-associated macrophages (LAMs) were detected in MA9-IL-34 microenvironment. Additionally, those LAMs showed M2-like phenotype since they expressed high level of M2-associated genes and had attenuated phagocytic potential, suggesting that LAMs should also contribute to IL-34 caused adverse phenotypes. Therefore, our findings uncover the intrinsic and microenvironmental mechanisms of IL-34 in AML and broadens the knowledge of M-CSF/IL-34-CSF-1R axis in malignancies.
Collapse
Affiliation(s)
- Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
6
|
Monteleone G, Franzè E, Maresca C, Colella M, Pacifico T, Stolfi C. Targeted Therapy of Interleukin-34 as a Promising Approach to Overcome Cancer Therapy Resistance. Cancers (Basel) 2023; 15:cancers15030971. [PMID: 36765929 PMCID: PMC9913481 DOI: 10.3390/cancers15030971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy and immunotherapy have markedly improved the management of several malignancies. However, not all cancer patients respond primarily to such therapies, and others can become resistant during treatment. Thus, identification of the factors/mechanisms underlying cancer resistance to such treatments could help develop novel effective therapeutic compounds. Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) are major components of the suppressive tumor microenvironment and are critical drivers of immunosuppression, creating a tumor-promoting and drug-resistant niche. In this regard, therapeutic strategies to tackle immunosuppressive cells are an interesting option to increase anti-tumor immune responses and overcome the occurrence of drug resistance. Accumulating evidence indicates that interleukin-34 (IL-34), a cytokine produced by cancer cells, and/or TAMs act as a linker between induction of a tumor-associated immunosuppressive microenvironment and drug resistance. In this article, we review the current data supporting the role of IL-34 in the differentiation/function of immune suppressive cells and, hence, in the mechanisms leading to therapeutic resistance in various cancers.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-20903702; Fax: +39-06-72596158
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
7
|
Lin M, Liu X, Zhang X, Wang H, Fang Y, Wu X, Yin A, Yang W, Zhang D, Li M, Zhang L, Ying S. Sp1 Controls the Basal Level of Interleukin-34 Transcription. Immunol Invest 2023; 52:224-240. [PMID: 36562687 DOI: 10.1080/08820139.2022.2157283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-34 (IL-34) is a cytokine that plays important roles at steady state and in diseases. The induced or inhibited expression of IL-34 by stimuli has been deeply investigated. However, the regulation of IL-34 basal expression is largely unknown. The aim of this study is to investigate whether IL-34 expression is regulated by a general transcription factor Specificity Protein 1 (Sp1) at transcription level. By using bioinformatic software, four putative Sp1-binding sites overlapping GC boxes were found in the core promoter region of IL-34. Alignment of the core promoter sequences of mammalian IL-34 showed GC box-C (-62/-57) and D (-11/-6) were conserved in some mammals. Luciferase assay results showed that only deletion of GC box-C (-62/-57) significantly reduced luciferase activities of IL-34 core promoter in SH-SY5Y cells. By using electrophoretic mobility shift assay (EMSA), it was found that Sp1 specifically interacted with GC box-C sequence CCCGCC (-62/-57) in the core promoter of IL-34. By using chromatin immunoprecipitation (ChIP), it was discovered that Sp1 bound to the core promoter of IL-34 in living cells. In addition, silencing of Sp1 expression by its specific siRNA reduced IL-34 mRNA and protein levels significantly in SH-SY5Y cells. Likewise, IL-34 expression was inhibited in a dose-dependent manner by a Sp1 inhibitor Plicamycin. Furthermore, silencing of Sp1 also downregulated mRNA and protein expression of IL-34 in GES-1 and 293T cell lines, suggesting that IL-34 transcription regulated by Sp1 was not cell-type specific. Taken together, these results indicate that Sp1 controls the basal level of IL-34 transcription.
Collapse
Affiliation(s)
- Minggui Lin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xingyun Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xinhui Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Huimin Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yu Fang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xiaoting Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Anqi Yin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Wanqing Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Dong Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Miaomiao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
8
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Nakamura T, Kajihara N, Hama N, Kobayashi T, Otsuka R, Han N, Wada H, Hasegawa Y, Suzuki N, Seino KI. Interleukin-34 cancels anti-tumor immunity by PARP inhibitor. J Gynecol Oncol 2022; 34:e25. [PMID: 36603850 PMCID: PMC10157335 DOI: 10.3802/jgo.2023.34.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Breast cancer susceptibility gene 1 (BRCA1)-associated ovarian cancer patients have been treated with A poly (ADP-ribose) polymerase (PARP) inhibitor, extending the progression-free survival; however, they finally acquire therapeutic resistance. Interleukin (IL)-34 has been reported as a poor prognostic factor in several cancers, including ovarian cancer, and it contributes to the therapeutic resistance of chemotherapies. IL-34 may affect the therapeutic effect of PARP inhibitor through the regulation of tumor microenvironment (TME). METHODS In this study, The Cancer Genome Atlas (TCGA) data set was used to evaluate the prognosis of IL-34 and human ovarian serous carcinoma. We also used CRISPR-Cas9 genome editing technology in a mouse model to evaluate the efficacy of PARP inhibitor therapy in the presence or absence of IL-34. RESULTS We found that IL34 was an independent poor prognostic factor in ovarian serous carcinoma, and its high expression significantly shortens overall survival. Furthermore, in BRCA1-associated ovarian cancer, PARP inhibitor therapy contributes to anti-tumor immunity via the XCR1+ DC-CD8+ T cell axis, however, it is canceled by the presence of IL-34. CONCLUSION These results suggest that tumor-derived IL-34 benefits tumors by creating an immunosuppressive TME and conferring PARP inhibitor therapeutic resistance. Thus, we showed the pathological effect of IL-34 and the need for it as a therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Takayoshi Nakamura
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Nabeel Kajihara
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Huang J, Liu W, Song S, Li JC, Gan K, Shen C, Holzbeierlein J, Li B. The iron-modulating hormone hepcidin is upregulated and associated with poor survival outcomes in renal clear cell carcinoma. Front Pharmacol 2022; 13:1080055. [PMID: 36532749 PMCID: PMC9757070 DOI: 10.3389/fphar.2022.1080055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 08/30/2023] Open
Abstract
Background: Reliable biomarkers are rare for renal cell carcinoma (RCC) treatment selection. We aimed to discover novel biomarkers for precision medicine. The iron-regulating hormone hepcidin (HAMP) was reportedly increased in RCC patient sera and tissues. However, its potential implication as a prognostic biomarker remains exclusive. Methods: Multiple RNA-seq and cDNA microarray datasets were utilized to analyze gene expression profiles. Hepcidin protein expression was assessed using an ELISA assay in cell culture models. Comparisons of gene expression profiles and patient survival outcomes were conducted using the R package bioinformatics software. Results: Five (HAMP, HBS, ISCA2, STEAP2, and STEAP3) out of 71 iron-modulating genes exhibited consistent changes along with tumor stage, lymph node invasion, distal metastasis, tumor cell grade, progression-free interval, overall survival, and disease-specific survival. Of which HAMP upregulation exerted as a superior factor (AUC = 0.911) over the other four genes in distinguishing ccRCC tissue from normal renal tissue. HAMP upregulation was tightly associated with its promoter hypomethylation and immune checkpoint factors (PDCD1, LAG3, TIGIT, and CTLA4). Interleukin-34 (IL34) treatment strongly enhanced hepcidin expression in renal cancer Caki-1 cells. Patients with higher levels of HAMP expression experienced worse survival outcomes. Conclusion: These data suggest that HAMP upregulation is a potent prognostic factor of poor survival outcomes and a novel immunotherapeutic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| | - Shiqi Song
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jean C. Li
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| | - Kaimei Gan
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunxiao Shen
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jeffrey Holzbeierlein
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
11
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|