1
|
Joshi S, López L, Morosi LG, Amadio R, Pachauri M, Bestagno M, Ogar IP, Giacca M, Piperno GM, Vorselen D, Benvenuti F. Tim4 enables large peritoneal macrophages to cross-present tumor antigens at early stages of tumorigenesis. Cell Rep 2024; 43:114096. [PMID: 38607919 DOI: 10.1016/j.celrep.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.
Collapse
Affiliation(s)
- Sonal Joshi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lucía López
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luciano Gastón Morosi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roberto Amadio
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Manendra Pachauri
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Bestagno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ironya Paul Ogar
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Mauro Giacca
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; King's College London, British Heart Foundation Center of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Giulia Maria Piperno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Daan Vorselen
- Department of Cell Biology & Immunology, Wageningen University & Research, 6708 PD Wageningen, the Netherlands
| | - Federica Benvenuti
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
2
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
3
|
Sun Z, Zhang L, Liu L. Reprogramming the lipid metabolism of dendritic cells in tumor immunomodulation and immunotherapy. Biomed Pharmacother 2023; 167:115574. [PMID: 37757492 DOI: 10.1016/j.biopha.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human body. They detect and process environmental signals and communicate with T cells to bridge innate and adaptive immunity. Cell activation, function, and survival are closely associated with cellular metabolism. An increasing number of studies have revealed that lipid metabolism affects DC activation as well as innate and acquired immune responses. Combining lipid metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T-cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in cancer therapy. This review summarizes the lipid metabolism of DCs under physiological conditions, analyzes the role of reprogramming the lipid metabolism of DCs in tumor immune regulation, and discusses potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Nesi I, Della Bella C, Taddei ML, Santi A, Pranzini E, Paoli P, D’Elios MM, Ramazzotti M, Genovese M, Caselli A, Cirri P. Targeting of tumor cells by custom antigen transfer: a novel approach for immunotherapy of cancer. Front Oncol 2023; 13:1245248. [PMID: 37901327 PMCID: PMC10612144 DOI: 10.3389/fonc.2023.1245248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
In the early stages of carcinogenesis, the transformed cells become "invisible" to the immune system. From this moment on, the evolution of the tumor depends essentially on the genotype of the primitive cancer cells and their subsequent genetic drift. The role of the immune system in blocking tumor progression from the earliest stages is largely underestimated because by the time tumors are clinically detectable, the immune system has already completely failed its task. Therefore, a clinical treatment capable of restoring the natural anti-tumor role of the immune system could prove to be the "ultimate weapon" against cancer. Herein, we propose a novel therapeutic approach for the treatment of solid cancer that exploits the capability of activated monocytes to transfer major histocompatibility complex I (MHC-I) molecules bound to antigenic peptides to cancer cells using microvesicles as cargo, making tumor cells target of a "natural" CD8+ T lymphocyte cytotoxic response.
Collapse
Affiliation(s)
- Ilaria Nesi
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| |
Collapse
|
5
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|