• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640759)   Today's Articles (820)   Subscriber (50392)
For: Bhandari R, Negi S, Rieth L, Normann RA, Solzbacher F. A Novel Method of Fabricating Convoluted Shaped Electrode Arrays for Neural and Retinal Prostheses. Sens Actuators A Phys 2008;145-146:123-130. [PMID: 19122774 PMCID: PMC2504338 DOI: 10.1016/j.sna.2007.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Number Cited by Other Article(s)
1
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024;126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
2
Zhao H, Liu R, Zhang H, Cao P, Liu Z, Li Y. Research Progress on the Flexibility of an Implantable Neural Microelectrode. MICROMACHINES 2022;13:386. [PMID: 35334680 PMCID: PMC8954487 DOI: 10.3390/mi13030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/25/2021] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
3
Roh H, Yoon YJ, Park JS, Kang DH, Kwak SM, Lee BC, Im M. Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes. NANO-MICRO LETTERS 2021;14:24. [PMID: 34888758 PMCID: PMC8656445 DOI: 10.1007/s40820-021-00778-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/01/2023]
4
Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019;1101:1-40. [PMID: 31729670 DOI: 10.1007/978-981-13-2050-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
5
Prospects for a Robust Cortical Recording Interface. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
6
Barz F, Livi A, Lanzilotto M, Maranesi M, Bonini L, Paul O, Ruther P. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. J Neural Eng 2017;14:036010. [DOI: 10.1088/1741-2552/aa5a90] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
7
Ghane Motlagh B, Choueib M, Hajhosseini Mesgar A, Hasanuzzaman M, Sawan M. Direct Growth of Carbon Nanotubes on New High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interfaces. MICROMACHINES 2016;7:mi7090163. [PMID: 30404335 PMCID: PMC6189795 DOI: 10.3390/mi7090163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
8
Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, Chander D, Richner TJ, Williams J. Optogenetic brain interfaces. IEEE Rev Biomed Eng 2014;7:3-30. [PMID: 24802525 DOI: 10.1109/rbme.2013.2294796] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
Jorfi M, Skousen JL, Weder C, Capadona JR. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 2014;12:011001. [PMID: 25460808 DOI: 10.1088/1741-2560/12/1/011001] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
10
MEMS-based microelectrode technologies capable of penetrating neural tissues. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0133-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]  Open
11
Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J Neurosci Methods 2013;215:78-87. [PMID: 23458659 DOI: 10.1016/j.jneumeth.2013.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 11/20/2022]
12
Lee YT, Yeh SR, Chang YC, Fang W. Integration of silicon-via electrodes with different recording characteristics on a glass microprobe using a glass reflowing process. Biosens Bioelectron 2011;26:4739-46. [PMID: 21696942 DOI: 10.1016/j.bios.2011.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
13
Bhandari R, Negi S, Rieth L, Solzbacher F. A Wafer-Scale Etching Technique for High Aspect Ratio Implantable MEMS Structures. SENSORS AND ACTUATORS. A, PHYSICAL 2010;162:130-136. [PMID: 20706618 PMCID: PMC2917827 DOI: 10.1016/j.sna.2010.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
14
Bhandari R, Negi S, Solzbacher F. Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices 2010;12:797-807. [DOI: 10.1007/s10544-010-9434-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Negi S, Bhandari R, Rieth L, Solzbacher F. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed Mater 2010;5:15007. [DOI: 10.1088/1748-6041/5/1/015007] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
16
Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants. SENSORS 2008;8:5845-5856. [PMID: 27873844 PMCID: PMC3705534 DOI: 10.3390/s8095845] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA