1
|
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
2
|
Zhao H, Liu R, Zhang H, Cao P, Liu Z, Li Y. Research Progress on the Flexibility of an Implantable Neural Microelectrode. MICROMACHINES 2022; 13:386. [PMID: 35334680 PMCID: PMC8954487 DOI: 10.3390/mi13030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/25/2021] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
Abstract
Neural microelectrode is the important bridge of information exchange between the human body and machines. By recording and transmitting nerve signals with electrodes, people can control the external machines. At the same time, using electrodes to electrically stimulate nerve tissue, people with long-term brain diseases will be safely and reliably treated. Young's modulus of the traditional rigid electrode probe is not matched well with that of biological tissue, and tissue immune rejection is easy to generate, resulting in the electrode not being able to achieve long-term safety and reliable working. In recent years, the choice of flexible materials and design of electrode structures can achieve modulus matching between electrode and biological tissue, and tissue damage is decreased. This review discusses nerve microelectrodes based on flexible electrode materials and substrate materials. Simultaneously, different structural designs of neural microelectrodes are reviewed. However, flexible electrode probes are difficult to implant into the brain. Only with the aid of certain auxiliary devices, can the implant be safe and reliable. The implantation method of the nerve microelectrode is also reviewed.
Collapse
Affiliation(s)
- Huiqing Zhao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Huiling Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Peng Cao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China
| | - Ye Li
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
3
|
Roh H, Yoon YJ, Park JS, Kang DH, Kwak SM, Lee BC, Im M. Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes. NANO-MICRO LETTERS 2021; 14:24. [PMID: 34888758 PMCID: PMC8656445 DOI: 10.1007/s40820-021-00778-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/01/2023]
Abstract
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface. This work presents a novel but simple method to fabricate high-density silicon (Si) microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs. The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching (DRIE) steps. First, a photoresist layer was patterned on a Si substrate to define areas to be etched, which will eventually determine the final location and shape of each individual microneedle. Then, the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate. Subsequently, the photoresist was removed for more isotropic etching; the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures. Depending on diverse photomask designs, the 2nd DRIE formed arrays of microneedles that have various height distributions, as well as diverse cross-sectional shapes across the substrate. With these simple steps, high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm-2 on a Si wafer. Insertion tests showed a small force as low as ~ 172 µN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain. To demonstrate a feasibility of drug delivery application, we also implemented silk microneedle arrays using molding processes. The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery, neuroprosthetic devices, and so on.
Collapse
Affiliation(s)
- Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Electrical Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Young Jun Yoon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Jin Soo Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Electrical Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Dong-Hyun Kang
- Micro/Nano Fabrication Center, KIST, Seoul, 02792, South Korea
| | - Seung Min Kwak
- Micro/Nano Fabrication Center, KIST, Seoul, 02792, South Korea
| | - Byung Chul Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, 02792, South Korea.
| |
Collapse
|
4
|
Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1101:1-40. [PMID: 31729670 DOI: 10.1007/978-981-13-2050-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Utah electrode array (UEA) and its many derivatives have become a gold standard for high-channel count bi-directional neural interfaces, in particular in human subject applications. The chapter provides a brief overview of leading electrode concepts and the context in which the UEA has to be understood. It goes on to discuss the key advances and developments of the UEA platform in the past 15 years, as well as novel wireless and system integration technologies that will merge into future generations of fully integrated devices. Aspects covered include novel device architectures that allow scaling of channel count and density of electrode contacts, material improvements to substrate, electrode contacts, and encapsulation. Further subjects are adaptations of the UEA platform to support IR and optogenetic simulation as well as an improved understanding of failure modes and methods to test and accelerate degradation in vitro such as to better predict device failure and lifetime in vivo.
Collapse
|
5
|
Prospects for a Robust Cortical Recording Interface. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Barz F, Livi A, Lanzilotto M, Maranesi M, Bonini L, Paul O, Ruther P. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. J Neural Eng 2017; 14:036010. [DOI: 10.1088/1741-2552/aa5a90] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Ghane Motlagh B, Choueib M, Hajhosseini Mesgar A, Hasanuzzaman M, Sawan M. Direct Growth of Carbon Nanotubes on New High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interfaces. MICROMACHINES 2016; 7:mi7090163. [PMID: 30404335 PMCID: PMC6189795 DOI: 10.3390/mi7090163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
Abstract
Silicon micromachined, high-density, pyramid-shaped neural microelectrode arrays (MEAs) have been designed and fabricated for intracortical 3D recording and stimulation. The novel architecture of this MEA has made it unique among the currently available micromachined electrode arrays, as it has provided higher density contacts between the electrodes and targeted neural tissue facilitating recording from different depths of the brain. Our novel masking technique enhances uniform tip-exposure for variable-height electrodes and improves process time and cost significantly. The tips of the electrodes have been coated with platinum (Pt). We have reported for the first time a selective direct growth of carbon nanotubes (CNTs) on the tips of 3D MEAs using the Pt coating as a catalyzer. The average impedance of the CNT-coated electrodes at 1 kHz is 14 kΩ. The CNT coating led to a 5-fold decrease of the impedance and a 600-fold increase in charge transfer compared with the Pt electrode.
Collapse
Affiliation(s)
- Bahareh Ghane Motlagh
- Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| | - May Choueib
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne 69622, France.
| | - Alireza Hajhosseini Mesgar
- Microfabrication Laboratory (LMF), Thin Films Group (GCM), Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| | - Md Hasanuzzaman
- Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| | - Mohamad Sawan
- Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
8
|
Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, Chander D, Richner TJ, Williams J. Optogenetic brain interfaces. IEEE Rev Biomed Eng 2014; 7:3-30. [PMID: 24802525 DOI: 10.1109/rbme.2013.2294796] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.
Collapse
|
9
|
Jorfi M, Skousen JL, Weder C, Capadona JR. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 2014; 12:011001. [PMID: 25460808 DOI: 10.1088/1741-2560/12/1/011001] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Adolphe Merkle Institute, University of Fribourg, Rte de l'Ancienne Papeterie, CH-1723 Marly, Switzerland
| | | | | | | |
Collapse
|
10
|
|
11
|
Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J Neurosci Methods 2013; 215:78-87. [PMID: 23458659 DOI: 10.1016/j.jneumeth.2013.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 11/20/2022]
Abstract
Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication.
Collapse
|
12
|
Lee YT, Yeh SR, Chang YC, Fang W. Integration of silicon-via electrodes with different recording characteristics on a glass microprobe using a glass reflowing process. Biosens Bioelectron 2011; 26:4739-46. [PMID: 21696942 DOI: 10.1016/j.bios.2011.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
Abstract
Electrodes on planar type microelectromechanical system (MEMS) microprobes mainly record neurons on the top-side of probe shaft (called a top-side electrode). However, it is often necessary to record neurons other than those on the top-side of the probe shaft. This study uses the glass reflowing technique to embed silicon-vias in a glass probe to implement a microprobe capable of recording neurons around the shaft. The proposed technology makes it possible to fabricate, distribute, and integrate four types of electrodes on the shaft: top-side, back-side, double-side, and sidewall electrodes. These electrodes have different recording characteristics. The in vitro and in vivo (using crayfish and rat brain) experiments in this study shows that the top-side and back-side electrodes are respectively more sensitive to neurons on the top-side and back-side of the probe shaft. In contrast, signals recorded by double-side electrode and sidewall electrode are equally sensitive to neurons around the probe shaft. This study enables the implementation and integration of these four types of electrodes, meeting the requirements of various neural applications.
Collapse
Affiliation(s)
- Yu-Tao Lee
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
13
|
Bhandari R, Negi S, Rieth L, Solzbacher F. A Wafer-Scale Etching Technique for High Aspect Ratio Implantable MEMS Structures. SENSORS AND ACTUATORS. A, PHYSICAL 2010; 162:130-136. [PMID: 20706618 PMCID: PMC2917827 DOI: 10.1016/j.sna.2010.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microsystem technology is well suited to batch fabricate microelectrode arrays, such as the Utah electrode array (UEA), intended for recording and stimulating neural tissue. Fabrication of the UEA is primarily based on the use of dicing and wet etching to achieve high aspect ratio (15:1) penetrating electrodes. An important step in the array fabrication is the etching of electrodes to produce needle-shape electrodes with sharp tips. Traditional etching processes are performed on a single array, and the etching conditions are not optimized. As a result, the process leads to variable geometries of electrodes within an array. Furthermore, the process is not only time consuming but also labor-intensive. This report presents a wafer-scale etching method for the UEA. The method offers several advantages, such as substantial reduction in the processing time, higher throughput and lower cost. More importantly, the method increases the geometrical uniformity from electrode to electrode within an array (1.5 ± 0.5 % non-uniformity), and from array to array within a wafer (2 ± 0.3 % non-uniformity). Also, the etching rate of silicon columns, produced by dicing, are studied as a function of temperature, etching time and stirring rate in a nitric acid rich HF-HNO(3) solution. These parameters were found to be related to the etching rates over the ranges studied and more-importantly affect the uniformity of the etched silicon columns. An optimum etching condition was established to achieve uniform shape electrode arrays on wafer-scale.
Collapse
Affiliation(s)
- R Bhandari
- Corresponding author: Rajmohan Bhandari,
| | | | | | | |
Collapse
|
14
|
Bhandari R, Negi S, Solzbacher F. Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices 2010; 12:797-807. [DOI: 10.1007/s10544-010-9434-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Negi S, Bhandari R, Rieth L, Solzbacher F. In vitro
comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed Mater 2010; 5:15007. [DOI: 10.1088/1748-6041/5/1/015007] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants. SENSORS 2008; 8:5845-5856. [PMID: 27873844 PMCID: PMC3705534 DOI: 10.3390/s8095845] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022]
Abstract
Polyimide has been widely applied to neural prosthetic devices, such as the retinal implants, due to its well-known biocompatibility and ability to be micropatterned. However, planar films of polyimide that are typically employed show a limited ability in reducing the distance between electrodes and targeting cell layers, which limits site resolution for effective multi-channel stimulation. In this paper, we report a newly designed device with a pillar structure that more effectively interfaces with the target. Electrode arrays were successfully fabricated and safely implanted inside the rabbit eye in suprachoroidal space. Optical Coherence Tomography (OCT) showed well-preserved pillar structures of the electrode without damage. Bipolar stimulation was applied through paired sites (6:1) and the neural responses were successfully recorded from several regions in the visual cortex. Electrically evoked cortical potential by the pillar electrode array stimulation were compared to visual evoked potential under full-field light stimulation.
Collapse
|