1
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
2
|
Oh JH, Martinez AD, Cao H, George GW, Cobb JS, Sharma P, Fassero LA, Arole K, Carr MA, Lovell KM, Shukla J, Saed MA, Tandon R, Marquart ME, Moores LC, Green MJ. Radio Frequency Heating of Washable Conductive Textiles for Bacteria and Virus Inactivation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43732-43740. [PMID: 36121103 DOI: 10.1021/acsami.2c11493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Aimee D Martinez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Garrett W George
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Jared S Cobb
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Lauren A Fassero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Kailash Arole
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Mary A Carr
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - K Michael Lovell
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Jayanti Shukla
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Mohammad A Saed
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi38655, United States
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Lee C Moores
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
3
|
Byun S, Yun JH, Heo S, Shi C, Lee GJ, Agno K, Jang K, Xiao J, Song YM, Jeong J. Self-Cooling Gallium-Based Transformative Electronics with a Radiative Cooler for Reliable Stiffness Tuning in Outdoor Use. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202549. [PMID: 35661444 PMCID: PMC9404411 DOI: 10.1002/advs.202202549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Reconfigurability of a device that allows tuning of its shape and stiffness is utilized for personal electronics to provide an optimal mechanical interface for an intended purpose. Recent approaches in developing such transformative electronic systems (TES) involved the use of gallium liquid metal, which can change its liquid-solid phase by temperature to facilitate stiffness control of the device. However, the current design cannot withstand excessive heat during outdoor applications, leading to undesired softening of the device when the rigid mode of operation is favored. Here, a gallium-based TES integrated with a flexible and stretchable radiative cooler is presented, which offers zero-power thermal management for reliable rigid mode operation in the hot outdoors. The radiative cooler can both effectively reflect the heat transfer from the sun and emit thermal energy. It, therefore, allows a TES-in-the-air to maintain its temperature below the melting point of gallium (29.8 ℃) under hot weather with strong sun exposure, thus preventing unwanted softening of the device. Comprehensive studies on optical, thermal, and mechanical characteristics of radiative-cooler-integrated TES, along with a proof-of-concept demonstration in the hot outdoors verify the reliability of this design approach, suggesting the possibility of expanding the use of TES in various environments.
Collapse
Affiliation(s)
- Sang‐Hyuk Byun
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Joo Ho Yun
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Se‐Yeon Heo
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Chuanqian Shi
- Department of Mechanical EngineeringUniversity of ColoradoBoulderCO80309USA
| | - Gil Ju Lee
- Department of Electronics EngineeringPusan National UniversityBusan46241Republic of Korea
| | - Karen‐Christian Agno
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Kyung‐In Jang
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Jianliang Xiao
- Department of Mechanical EngineeringUniversity of ColoradoBoulderCO80309USA
| | - Young Min Song
- School of Electrical Engineering and Computer ScienceGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Jae‐Woong Jeong
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
4
|
Overview and Exploitation of Haptic Tele-Weight Device in Virtual Shopping Stores. SUSTAINABILITY 2021. [DOI: 10.3390/su13137253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In view of the problem of e-commerce scams and the absence of haptic interaction, this research aims to introduce and create a tele-weight device for e-commerce shopping in smart cities. The objective is to use the proposed prototype to provide a brief overview of the possible technological advancements. When the tele-weight device is affixed over the head-mounted display, it allows the user to feel the item’s weight while shopping in the virtual store. Addressing the problem of having no physical interaction between the user (player) and a series game scene in virtual reality (VR) headsets, this research approach focuses on creating a prototype device that has two parts, a sending part and a receiving part. The sending part measures the weight of the object and transmits it over the cellular network to the receiver side. The virtual store user at the receiving side can thus realize the weight of the ordered object. The findings from this work include a visual display of the item’s weight to the virtual store e-commerce user. By introducing sustainability, this haptic technology-assisted technique can help the customer realize the weight of an object and thus have a better immersive experience. In the device, the load cell measures the weight of the object and amplifies it using the HX711 amplifier. However, some delay in the demonstration of the weight was observed during experimentation, and this indirectly altered the performance of the system. One set of the device is sited at the virtual store user premises while the sending end of the device is positioned at the warehouse. The sending end hardware includes an Arduino Uno device, an HX711 amplifier chip to amplify the weight from the load cell, and a cellular module (Sim900A chip-based) to transmit the weight in the form of an encoded message. The receiving end hardware includes a cellular module and an actuator involving a motor gear arrangement to demonstrate the weight of the object. Combining the fields of e-commerce, embedded systems, VR, and haptic sensing, this research can help create a more secure marketplace to attain a higher level of customer satisfaction.
Collapse
|
5
|
Zhai Y, Wang Z, Kwon KS, Cai S, Lipomi DJ, Ng TN. Printing Multi-Material Organic Haptic Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002541. [PMID: 33135205 DOI: 10.1002/adma.202002541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Haptic actuators generate touch sensations and provide realism and depth in human-machine interactions. A new generation of soft haptic interfaces is desired to produce the distributed signals over large areas that are required to mimic natural touch interactions. One promising approach is to combine the advantages of organic actuator materials and additive printing technologies. This powerful combination can lead to devices that are ergonomic, readily customizable, and economical for researchers to explore potential benefits and create new haptic applications. Here, an overview of emerging organic actuator materials and digital printing technologies for fabricating haptic actuators is provided. In particular, the focus is on the challenges and potential solutions associated with integration of multi-material actuators, with an eye toward improving the fidelity and robustness of the printing process. Then the progress in achieving compact, lightweight haptic actuators by using an open-source extrusion printer to integrate different polymers and composites in freeform designs is reported. Two haptic interfaces-a tactile surface and a kinesthetic glove-are demonstrated to show that printing with organic materials is a versatile approach for rapid prototyping of various types of haptic devices.
Collapse
Affiliation(s)
- Yichen Zhai
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Kye-Si Kwon
- Department of Mechanical Engineering, Soonchunhyang University, Asan City, Chungnam, 31538, South Korea
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Darren J Lipomi
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Lipomi DJ, Dhong C, Carpenter CW, Root NB, Ramachandran VS. Organic Haptics: Intersection of Materials Chemistry and Tactile Perception. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1906850. [PMID: 34276273 PMCID: PMC8281818 DOI: 10.1002/adfm.201906850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 05/06/2023]
Abstract
The goal of the field of haptics is to create technologies that manipulate the sense of touch. In virtual and augmented reality, haptic devices are for touch what loudspeakers and RGB displays are for hearing and vision. Haptic systems that utilize micromotors or other miniaturized mechanical devices (e.g., for vibration and pneumatic actuation) produce interesting effects, but are quite far from reproducing the feeling of real materials. They are especially deficient in recapitulating surface properties: fine texture, friction, viscoelasticity, tack, and softness. The central argument of this Progress Report is that to reproduce the feel of everyday objects requires chemistry: molecular control over the properties of materials and ultimately design of materials which can change these properties in real time. Stimuli-responsive organic materials, such as polymers and composites, are a class of materials which can change their oxidation state, conductivity, shape, and rheological properties, and thus might be useful in future haptic technologies. Moreover, the use of such materials in research on tactile perception could help elucidate the limits of human tactile sensitivity. The work described represents the beginnings of this new area of inquiry, in which the defining approach is the marriage of materials science and psychology.
Collapse
Affiliation(s)
- Darren J Lipomi
- Department of NanoEngineering and Program in Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Charles Dhong
- Department of NanoEngineering and Program in Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Cody W Carpenter
- Department of NanoEngineering and Program in Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Nicholas B Root
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109
| | - Vilayanur S Ramachandran
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109
| |
Collapse
|
7
|
Carpenter CW, Malinao MG, Rafeedi TA, Rodriquez D, Melissa Tan ST, Root NB, Skelil K, Ramírez J, Polat B, Root SE, Ramachandran VS, Lipomi DJ. Electropneumotactile Stimulation: Multimodal Haptic Actuators Enabled by a Stretchable Conductive Polymer on Inflatable Pockets. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1901119. [PMID: 32905479 PMCID: PMC7469953 DOI: 10.1002/admt.201901119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 05/30/2023]
Abstract
This paper describes a type of haptic device that delivers two modes of stimulation simultaneously and at the same locations on the skin. The two modes of stimulation are mechanical (delivered pneumatically by inflatable air pockets embedded within a silicone elastomer) and electrical (delivered by a conductive polymer). The key enabling aspect of this work is the use of a highly plasticized conductive polymer based on poly(3,4-ethylenedioxythiphene) (PEDOT) blended with elastomeric polyurethane (PU). To fabricate the "electropneumotactile" device, the polymeric electrodes are overlaid directly on top of the elastomeric pneumatic actuator pockets. Co-placement of the pneumatic actuators and the electrotactile electrodes is enabled by the stretchability of the PEDOT:OTs/PU blend, allowing the electrotactiles to conform to underlying pneumatic pockets under deformation. The blend of PEDOT and PU has a Young's modulus of ~150 MPa with little degradation in conductivity following repeated inflation of the air pockets. The ability to perceive simultaneous delivery of two sensations to the same location on the skin are supported by experiments using human subjects. These results show that participants can successfully detect the location of pneumatic stimulation and whether electrotactile stimulation is delivered (yes/no) at a rate significantly above chance (mean accuracy = 94%).
Collapse
Affiliation(s)
- Cody W. Carpenter
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Marigold G. Malinao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Tarek A. Rafeedi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Daniel Rodriquez
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Siew Ting Melissa Tan
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Nicholas B. Root
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109
| | - Kyle Skelil
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Julian Ramírez
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Beril Polat
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Samuel E. Root
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Vilayanur S. Ramachandran
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109
| | - Darren J. Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| |
Collapse
|