1
|
Zhu C, Gerald RE, Huang J. Micromachined Optical Fiber Sensors for Biomedical Applications. Methods Mol Biol 2022; 2393:367-414. [PMID: 34837190 DOI: 10.1007/978-1-0716-1803-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical fibers revolutionized the rate of information reception and transmission in telecommunications. The revolution has now extended to the field of physicochemical sensing. Optical fiber sensors (OFSs) have found a multitude of applications, spanning from structural health monitoring to biomedical and clinical measurements due to their unique physical and functional advantages, such as small dimensions, light weight, immunity to electromagnetic interference, high sensitivity and resolution, multiplexing, and remote operation. OFSs generally rely on the detection of measurand-induced changes in the optical properties of the light propagating in the fiber, where the OFS essentially functions as the conduit and physical link between the probing light waves and the physicochemical parameters under investigation. Several advanced micromachining techniques have been developed to optimize the structure of OFSs, thus improving their sensing performance. These techniques include fusion splicing, tapering, polishing, and more complicated femtosecond laser micromachining methods. This chapter discusses and reviews the most recent developments in micromachined OFSs specifically for biomedical applications. Step-by-step procedures for several optical fiber micromachining techniques are detailed.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Rex E Gerald
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
| |
Collapse
|
2
|
Fibre-Optic Surface Plasmon Resonance Biosensor for Monoclonal Antibody Titer Quantification. BIOSENSORS-BASEL 2021; 11:bios11100383. [PMID: 34677339 PMCID: PMC8534111 DOI: 10.3390/bios11100383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
An extraordinary optical transmission fibre-optic surface plasmon resonance biosensing platform was engineered to improve its portability and sensitivity, and was applied to monitor the concentrations of monoclonal antibodies (Mabs). By refining the fabricating procedure and changing the material of the flow cell and the components of the optical fibre, the biosensor is portable and robust to external interference. After the implementation of an effective template cleaning procedure and precise control during the fabrication process, a consistent sensitivity of 509 ± 5 nm per refractive index unit (nm/RIU) was achieved. The biosensor can detect the Mab with a limit of detection (LOD) of 0.44 µg/mL. The results show that the biosensor is a potential tool for the rapid quantification of Mab titers. The biosensor can be regenerated at least 10 times with 10 mM glycine (pH = 2.5), and consistent signal changes were obtained after regeneration. Moreover, the employment of a spacer arm SM(PEG)2, used for immobilising protein A onto the gold film, was demonstrated to be unable to improve the detecting sensitivity; thus, a simple procedure without the spacer arm could be used to prepare the protein A-based biosensor. Our results demonstrate that the fibre-optic surface plasmon resonance biosensor is competent for the real-time and on-line monitoring of antibody titers in the future as a process analytical technologies (PATs) tool for bioprocess developments and the manufacture of therapeutic antibodies.
Collapse
|
3
|
Liu J, Jasim I, Liu T, Huang J, Kinzel E, Almasri M. Off-axis microsphere photolithography patterned nanohole array and other structures on an optical fiber tip for glucose sensing. RSC Adv 2021; 11:25912-25920. [PMID: 35479472 PMCID: PMC9037099 DOI: 10.1039/d1ra02652f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Off-axis microsphere photolithography (MPL) was used as a method to create a plasmonic fiber-based sensor for glucose sensing. Sensitivity of 906 nm per RIU has been achieved. And multiple nanostructures have been successfully created on a fiber tip.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Electrical Engineering and Computer Science
- University of Missouri
- Columbia
- USA
| | - Ibrahem Jasim
- Department of Electrical Engineering and Computer Science
- University of Missouri
- Columbia
- USA
| | - Tao Liu
- Department of Electrical and Computer Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Jie Huang
- Department of Electrical and Computer Engineering
- Missouri University of Science and Technology
- Rolla
- USA
| | - Edward Kinzel
- Department of Mechanical and Aerospace Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Mahmoud Almasri
- Department of Electrical Engineering and Computer Science
- University of Missouri
- Columbia
- USA
| |
Collapse
|
4
|
Yang Q, Cristea A, Roberts C, Liu K, Song Y, Xiao H, Shi H, Ma Y. Unveil early-stage nanocytotoxicity by a label-free single cell pH nanoprobe. Analyst 2020; 145:7210-7224. [PMID: 32960188 PMCID: PMC7655686 DOI: 10.1039/d0an01437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-cell analysis is an emerging research area that aims to reveal delicate cellular status and underlying mechanisms by conquering the intercellular heterogeneity. Current single-cell research methods, however, are highly dependent on cell-destructive protocols and cannot sequentially display the progress of cellular events. A recently developed pH nanoprobe in our lab conceptually showed its ability to detect intracellular pH (pHi) without cell labeling or disruption. In the present study, we took the cytotoxicity of nanoparticles (NPs) as a typical example of cell heterogeneity, to testify the practicality of the pH nanoprobe in interpreting cell status. Three types of NPs (CeO2, TiO2, and SiO2) were employed to generate varied toxic effects. Results showed that the traditional assays - including cell viability, intracellular ROS generation, and mitochondrial inner membrane depolarization - not only failed to report the nanotoxicity accurately and timely, but also drew confusing or misleading conclusions. The pH nanoprobe revealed explicit pHi changes induced by the NPs, which corresponded well with the cell damages found by the transmission electron microscopic (TEM) imaging. Besides, our results unveiled an unexpectedly devastating effect of SiO2 NPs on cells during the early stage NP-cell interaction. The developed novel pH nanoprobe demonstrated a rapid sensing capability at single-cell resolution with minimum invasiveness. Therefore, it may become a promising alternative for a wide range of applications in areas such as single-cell research and precision medicine.
Collapse
Affiliation(s)
- Qingbo Yang
- Department of Chemistry, and Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yang Q, Zhang X, Song Y, Li K, Shi H, Xiao H, Ma Y. Label-Free in Situ pH Monitoring in a Single Living Cell Using an Optical Nanoprobe. ACTA ACUST UNITED AC 2020; 3. [PMID: 33073180 DOI: 10.1002/mds3.10079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Intracellular pH plays critical roles in cell and tissue functions during processes such as metabolism, proliferation, apoptosis, ion transportation, endocytosis, muscle contraction and so on. It is thus an important biomarker that can readily be used to monitor the physiological status of a cell. Thus, disrupted intracellular pH may serve as an early indicator of cell dysfunction and deterioration. Various methods have been developed to detect cellular pH, such as pH-sensitive labeling reagents with fluorescent or Raman signals. However, excessive cellular uptake of these reagents will not only disrupt cell viability but also compromise effective long-term monitoring. Here, we present a novel fiber-optic fluorescent nanoprobe with a high spatial resolution for label-free, subcellular pH sensing. The probe has a fast response time (~20 seconds) with minimum invasiveness and excellent pH resolution (0.02 pH units) within a biologically relevant pH environment ranging from 6.17 to 8.11. Its applicability was demonstrated on cultured A549 lung cancer cells, and its efficacy was further testified in two typical cytotoxic cases using carbonylcyanide 3-chlorophenyl hydrazine, titanium dioxide, and nanoparticles. The probe can readily detect the pH variations among cells under toxin/nanoparticles administration, enabling direct monitoring of the early onset of physiological or pathological events with high spatiotemporal resolution. This platform has excellent promise as a minimum invasive diagnostic tool for pH-related cellular mechanism studies, such as inflammation, cytotoxicity, drug resistance, carcinogenesis, stem cell differentiation and so on.
Collapse
Affiliation(s)
- Qingbo Yang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.,Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Xiaobei Zhang
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Yang Song
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Ke Li
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.,Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Hai Xiao
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Yinfa Ma
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.,Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
6
|
Polley N, Basak S, Hass R, Pacholski C. Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment. Biosens Bioelectron 2019; 132:368-374. [PMID: 30901726 DOI: 10.1016/j.bios.2019.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 ± 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors.
Collapse
Affiliation(s)
- Nabarun Polley
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Supratim Basak
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany; University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Roland Hass
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Claudia Pacholski
- University of Potsdam, Institute of Chemistry, Physical Chemistry - innoFSPEC, Am Mühlenberg 3, 14476 Potsdam, Germany; University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
7
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
8
|
Zhao E, Jia P, Ebendorff-Heidepriem H, Li H, Huang P, Liu D, Li H, Yang X, Liu L, Guan C. Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge. NANOTECHNOLOGY 2017; 28:435504. [PMID: 28782734 DOI: 10.1088/1361-6528/aa847a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper proposes a simple, stable, sensitive, and angle-dependent localized surface plasmon resonance (LSPR) sensing structure based on multi-mode optical fiber. We adopted the template transfer method to integrate a nanohole array onto a fiber tip with beveled angle. Experimental results indicated that beveled angle structured probe sensor outperform the flat optical fiber tip structured LSPR sensor in our experiment. We tested the sensitivity and the figure of merit (FOM) of the probe beveled angle from 5°-22°, with refractive index ranging from 1.333-1.385, to find that sensitivity and FOM were optimal at fiber tip bevel angle of 7°, reaching 487 nm/RIU and 29 respectively.
Collapse
Affiliation(s)
- Enming Zhao
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen Z, Hefferman G, Wei T. Multiplexed displacement fiber sensor using thin core fiber exciter. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:065004. [PMID: 26133865 DOI: 10.1063/1.4922019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Gerald Hefferman
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Tao Wei
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|