1
|
Zhang B, Mumtaz F, Roman M, Alla DR, Gerald Ii RE, Huang J. Miniaturized fluorescence pH sensor with assembly free ball lens on a tapered multimode optical fiber. OPTICS EXPRESS 2024; 32:4228-4241. [PMID: 38297628 DOI: 10.1364/oe.511190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
In biochemistry, the absence of a compact, assembly-free pH sensor with high sensitivity and signal-to-noise ratio has been a persistent hurdle in achieving accurate pH measurements in real time, particularly in complex liquid environments. This manuscript introduces what we believe to be a novel solution in the form of a miniaturized pH sensor utilizing an assembly-free ball lens on a tapered multimode optical fiber (TMMF), offering the potential to revolutionize pH sensing in biochemical applications. A multimode optical fiber (MMF) was subjected to tapering processes, leading to the creation of an ultra-thin needle-like structure with a cross-sectional diameter of about 12.5 µm and a taper length of 3 mm. Subsequently, a ball lens possessing a diameter of 20 µm was fabricated at the apex of the taper. The resultant structure was coated utilizing the dip-coating technique, involving a composite mixture of epoxy and pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), thereby ensconcing the tapered ball lens with dye molecules for pH sensing. This study encompassed the fabrication and evaluation of six distinct fiber structures, incorporating the cleaved endface, the convex lens, and the ball lens structures to compare light focal lengths and propagation intensities. Computational simulations and numerical analyses were conducted to elucidate the encompassing light focal distances across the full array of lens configurations. The efficacy of the proposed pH sensor was subsequently assessed through its deployment within a complex liquid medium spanning a pH spectrum ranging from 6 to 8. Real-time data acquisition was performed with a fast response time of 0.5 seconds. A comparative analysis with a pH sensor predicated upon a single TMMF embedded with the fluorescent dye underscored the substantial signal enhancement achieved by the proposed system twice the fluorescence signal magnitude. The proposed assembly-free miniaturized pH sensor not only substantiates enhanced signal collection efficiency but also decisively addresses the persistent challenges of poor signal-to-noise ratio encountered within contemporary miniaturized pH probes.
Collapse
|
2
|
Velasco-Bolom PM, Camas-Anzueto JL, Lopez-Cortes D, Avendaño-Roque AJ, Ruiz-Perez VI. Optical fiber pH sensor based on a multimode interference device with polymer overlay. APPLIED OPTICS 2023; 62:3637-3642. [PMID: 37706980 DOI: 10.1364/ao.485139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 09/15/2023]
Abstract
An optical fiber pH sensor based on a multimode interference structure is presented. The sensitive element is a piece of no-core fiber (NCF) coated with a mixture of polyallylamine hydrochloride and polyacrylic acid by a modified layer-by-layer (LbL) self-assembly method. It is experimentally shown that by reducing the diameter of the NCF by chemical etching, the sensitivity is increased from -0.31n m/p H to -2n m/p H. The sensor exhibits a high linear response of 0.997 over a pH range from 5 to 11.3 with a rapid response time lower than 1 s.
Collapse
|
3
|
Yao S, Zhou W, Hinson R, Dong P, Wu S, Ives J, Hu X, Huang H, Zhu Y. Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101637. [PMID: 36276406 PMCID: PMC9581336 DOI: 10.1002/admt.202101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/12/2023]
Abstract
Biopotential electrodes have found broad applications in health monitoring, human-machine interactions, and rehabilitation. Here, we report the fabrication and applications of ultrasoft breathable dry electrodes that can address several challenges for their long-term wearable applications - skin compatibility, wearability, and long-term stability. The proposed electrodes rely on porous and conductive silver nanowire based nanocomposites as the robust mechanical and electrical interface. The highly conductive and conformable structure eliminates the necessity of conductive gel while establishing a sufficiently low electrode-skin impedance for high-fidelity electrophysiological sensing. The introduction of gas-permeable structures via a simple and scalable method based on sacrificial templates improves breathability and skin compatibility for applications requiring long-term skin contact. Such conformable and breathable dry electrodes allow for efficient and unobtrusive monitoring of heart, muscle, and brain activities. In addition, based on the muscle activities captured by the electrodes and a musculoskeletal model, electromyogram-based neural-machine interfaces were realized, illustrating the great potential for prosthesis control, neurorehabilitation, and virtual reality.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Weixin Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert Hinson
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jasmine Ives
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - He Huang
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
4
|
Werner J, Belz M, Klein KF, Sun T, Grattan KTV. Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Analyst 2021; 146:4811-4821. [PMID: 34195717 DOI: 10.1039/d1an00631b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optical, and especially fiber-optic techniques for the sensing of pH have become very attractive and considerable research progress in this field has been made over recent years. The determination of the value of pH across a broad range of applications today, important for areas of study such as life sciences, environmental monitoring, manufacturing industry and widely in biological research is now accessible from such optical sensors. The need for such technology arises because familiar, commercial sensors are often limited in terms of their response time and the presence of drift, all of which emphasize the value of newer and rapidly developing technologies such as fiber-optic sensors, to address these wider applications. As a result, a new compact sensor design has been developed, designed around a specially-formed fiber-optic tip, coated with a pH-sensitive dye, and importantly covalently linked to a hydrogel matrix to provide high stability. The sensor developed was designed to have a very fast response time (to 90% of saturation, Δt90) of <5 s and a sensing uncertainty of ∼±0.04 pH units. Given the covalently bonded nature of the dye, the problem of leaching of the indicator dye is reduced, creating a probe which has been shown to be very stable over many days of use. Illustrating this through extended continuous use, over ∼12 h at pH 7, this stability was confirmed showing a drift of <0.05 pH h-1. In order to give an illustration of the value of the probe in an important biological application, the monitoring of pH levels between pH 7 to pH 8 in an AMES' medium, a substance which is important to maintain the metabolism of retinal cells is shown and the results as well as temperature stability of the probe discussed.
Collapse
Affiliation(s)
- Jan Werner
- School of Mathematics, Computer Science and Engineering, City, University of London, Northampton Square, EC1 V 0HB, London, UK.
| | | | | | | | | |
Collapse
|
5
|
Yang Q, Cristea A, Roberts C, Liu K, Song Y, Xiao H, Shi H, Ma Y. Unveil early-stage nanocytotoxicity by a label-free single cell pH nanoprobe. Analyst 2020; 145:7210-7224. [PMID: 32960188 PMCID: PMC7655686 DOI: 10.1039/d0an01437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-cell analysis is an emerging research area that aims to reveal delicate cellular status and underlying mechanisms by conquering the intercellular heterogeneity. Current single-cell research methods, however, are highly dependent on cell-destructive protocols and cannot sequentially display the progress of cellular events. A recently developed pH nanoprobe in our lab conceptually showed its ability to detect intracellular pH (pHi) without cell labeling or disruption. In the present study, we took the cytotoxicity of nanoparticles (NPs) as a typical example of cell heterogeneity, to testify the practicality of the pH nanoprobe in interpreting cell status. Three types of NPs (CeO2, TiO2, and SiO2) were employed to generate varied toxic effects. Results showed that the traditional assays - including cell viability, intracellular ROS generation, and mitochondrial inner membrane depolarization - not only failed to report the nanotoxicity accurately and timely, but also drew confusing or misleading conclusions. The pH nanoprobe revealed explicit pHi changes induced by the NPs, which corresponded well with the cell damages found by the transmission electron microscopic (TEM) imaging. Besides, our results unveiled an unexpectedly devastating effect of SiO2 NPs on cells during the early stage NP-cell interaction. The developed novel pH nanoprobe demonstrated a rapid sensing capability at single-cell resolution with minimum invasiveness. Therefore, it may become a promising alternative for a wide range of applications in areas such as single-cell research and precision medicine.
Collapse
Affiliation(s)
- Qingbo Yang
- Department of Chemistry, and Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang Q, Zhang X, Song Y, Li K, Shi H, Xiao H, Ma Y. Label-Free in Situ pH Monitoring in a Single Living Cell Using an Optical Nanoprobe. ACTA ACUST UNITED AC 2020; 3. [PMID: 33073180 DOI: 10.1002/mds3.10079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Intracellular pH plays critical roles in cell and tissue functions during processes such as metabolism, proliferation, apoptosis, ion transportation, endocytosis, muscle contraction and so on. It is thus an important biomarker that can readily be used to monitor the physiological status of a cell. Thus, disrupted intracellular pH may serve as an early indicator of cell dysfunction and deterioration. Various methods have been developed to detect cellular pH, such as pH-sensitive labeling reagents with fluorescent or Raman signals. However, excessive cellular uptake of these reagents will not only disrupt cell viability but also compromise effective long-term monitoring. Here, we present a novel fiber-optic fluorescent nanoprobe with a high spatial resolution for label-free, subcellular pH sensing. The probe has a fast response time (~20 seconds) with minimum invasiveness and excellent pH resolution (0.02 pH units) within a biologically relevant pH environment ranging from 6.17 to 8.11. Its applicability was demonstrated on cultured A549 lung cancer cells, and its efficacy was further testified in two typical cytotoxic cases using carbonylcyanide 3-chlorophenyl hydrazine, titanium dioxide, and nanoparticles. The probe can readily detect the pH variations among cells under toxin/nanoparticles administration, enabling direct monitoring of the early onset of physiological or pathological events with high spatiotemporal resolution. This platform has excellent promise as a minimum invasive diagnostic tool for pH-related cellular mechanism studies, such as inflammation, cytotoxicity, drug resistance, carcinogenesis, stem cell differentiation and so on.
Collapse
Affiliation(s)
- Qingbo Yang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.,Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Xiaobei Zhang
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Yang Song
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Ke Li
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.,Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Hai Xiao
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, United States
| | - Yinfa Ma
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.,Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
7
|
Gong J, Tanner MG, Venkateswaran S, Stone JM, Zhang Y, Bradley M. A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity. Anal Chim Acta 2020; 1134:136-143. [PMID: 33059859 DOI: 10.1016/j.aca.2020.07.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
Technologies for measuring physiological parameters in vivo offer the possibility of the detection of disease and its progression due to the resulting changes in tissue pH, or temperature, etc.. Here, a compact hydrogel-based optical fibre pH sensor was fabricated, in which polymer microarrays were utilized for the high-throughput discovery of an optimal matrix for pH indicator immobilization. The fabricated hydrogel-based probe responded rapidly to pH changes and demonstrated a good linear correlation within the physiological pH range (from 5.5 to 8.0) with a precision of 0.10 pH units. This miniature probe was validated by measuring pH across a whole ovine lung and allowed discrimination of tumorous and normal tissue, thus offering the potential for the rapid and accurate observation of tissue pH changes.
Collapse
Affiliation(s)
- Jingjing Gong
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, UK; EPSRC Proteus Hub, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Michael G Tanner
- EPSRC Proteus Hub, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Seshasailam Venkateswaran
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - James M Stone
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Yichuan Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, UK; EPSRC Proteus Hub, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
8
|
Affiliation(s)
- Xu-dong Wang
- Department of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Otto S. Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
9
|
Zheng W, Yang H, Xuan G, Dai L, Hu Y, Hu S, Zhong S, Li Z, Gao M, Wang S, Feng Y. Longitudinal Study of the Effects of Environmental pH on the Mechanical Properties of Aspergillus niger. ACS Biomater Sci Eng 2017; 3:2974-2979. [PMID: 33418717 DOI: 10.1021/acsbiomaterials.6b00294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The regulation of environmental pH is key to the health of an ecosystem, influencing the metabolic activity, growth, and development of organisms within it. Although pH values can be measured by a wide range of readily available technologies ranging from fluorescent dyes and nanosensors, these cannot reveal the history of environmental pH from before monitoring begins. This information is sometimes crucial for piecing together what has happened to an ecosystem, and our long-term goal is therefore to develop technologies capable of obtaining it. Here, we propose monitoring environmental pH over time by tracking mechanical properties of a common fungus. As a first step toward obtaining a time history of pH, we evaluate the effect of pH upon the effective indentation modulus of spores and hyphae of Aspergillus niger. We report that the indentation modulus of this phosphorus-solubilizing fungus, obtained through atomic force microscopy and nanoindentation, correlated with environmental acidity. We observed a significant, monotonic increase in moduli over the course of incubation in an acidic environment, but no change in moduli over time for incubation in a neutral environment. Results show promise for using our scheme to detect and track environmental pH over time, and more broadly for using a microorganism's mechanical properties as a biomarker for environmental detection.
Collapse
Affiliation(s)
- Wenjun Zheng
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.,School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Hua Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghui Xuan
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.,School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Letian Dai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yunxiao Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.,Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shengkui Zhong
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuan Feng
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.,School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|