1
|
Sari AAA, Alzahrani SO, Alatawi ISS, Aljohani MM, Shah R, Saad FA, Khalil MA, El-Metwaly NM. An effective procedure used metal-organic framework for determination of cadmium ions in real tap water and human blood plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124989. [PMID: 39154403 DOI: 10.1016/j.saa.2024.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdullah Ali A Sari
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Seraj Omar Alzahrani
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia
| | - Ibrahim S S Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Shah
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M A Khalil
- Egyptian Propylene and Polypropylene Company, Port Said 42511, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Yang M, Wang J, Xue X, Jiang H. Colorimetric detection of Hg 2+ based on the enhanced oxidase-mimic activity of CuO/Au@Cu 3(BTC) 2 triggered by Hg 2. RSC Adv 2024; 14:13808-13816. [PMID: 38681841 PMCID: PMC11046446 DOI: 10.1039/d4ra01953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
It is imperative to develop a rapid detection method for Hg2+ due to its harm to human health and the ecological environment. In this research, CuO/Au@Cu3(BTC)2 was synthesized through reducing HAuCl4 by CuxO@Cu3(BTC)2, which was obtained by reducing Cu3(BTC)2 with hydrazine hydrate. The oxidase-mimic activity of CuO/Au@Cu3(BTC)2 can be enhanced by Hg2+ through forming a Au-Hg alloy. Therefore, a colorimetric method was designed for Hg2+ detection with a linear relationship in the 0.05-25 μM range and a limit of detection of 9.7 nM. This strategy exhibited a strong selectivity to Hg2+ and was applied in a real water sample with reliable recoveries. This work provides a possibility for the rapid detection of Hg2+.
Collapse
Affiliation(s)
- Min Yang
- School of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Xuan Xue
- School of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 China
| | - Hechun Jiang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University Jinan 250100 China
| |
Collapse
|
3
|
Bi X, Liu X, Luo L, Liu S, He Y, Zhang L, Li L, You T. Isolation of Sensing Units and Adsorption Groups Based on MOF-on-MOF Hierarchical Structure for Both Highly Sensitive Detection and Removal of Hg 2. Inorg Chem 2024; 63:2224-2233. [PMID: 38214448 DOI: 10.1021/acs.inorgchem.3c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Bifunctional materials have attracted ongoing interest in the field of detection and removal of contaminants because of their integration of two functions, but they exhibit commonly exceptional performance in only one of these two aspects. The interaction between the two functional units of the bifunctional materials may compromise their sensing and adsorption abilities. Guided by the concept of domain building blocks (DBBs), a hierarchical metal-organic framework (MOF)-on-MOF hybrid was designed by growing gold nanoclusters (AuNCs)-embedded zeolitic imidazolate framework 8 (AuNCs/ZIF-8) on the surface of Zr-MOF (UiO-66-NH2) for the simultaneous detection and removal of Hg2+. In the hybrid, the amino groups (-NH2) and AuNCs─which were the adsorption groups and sensing units, respectively, were isolated from each other. Specifically, the adsorption groups (-NH2) were assembled in the inner UiO-66-NH2 layer, while the sensing units (AuNCs) were confined in the outer ZIF-8 layer. This hierarchical structure not only spatially hindered the electron transfer between these two units but also triggered the aggregation-induced emission of AuNCs because of the confinement of ZIF-8 on the AuNCs, thus changing the fluorescence of AuNCs from quenching to enhancement. The newly prepared UiO-66-NH2@AuNCs/ZIF-8 hybrid, as expected, showed an ultralow detection limit (0.42 ppb) and a high adsorption capacity (129.9 mg·g-1) for Hg2+. Overall, this work provides a feasible approach to improve the integrated performance of MOF-based composites based on DBBs.
Collapse
Affiliation(s)
- Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
4
|
Pavoor Veedu A, Kuppusamy S, Mohan AM, Deivasigamani P. Chromogenic probe adhered porous polymer monolith as real-time solid-state sensor for the detection of ultra-trace toxic mercury ions. ENVIRONMENTAL RESEARCH 2023; 239:117399. [PMID: 37838196 DOI: 10.1016/j.envres.2023.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The escalating predicament of water pollution has spurred the development of new chromogenic materials for the efficient detection/screening of toxic mercuric (Hg2+) ions. In this study, we report a simple and efficient detection stratagem by infusing a chromogenic ion-receptor (BTDA), i.e., 4-(benzothiazol-2-yl)-N, N-dimethylaniline onto a structurally intertwined meso-/macro-pore polymer template for the target-specific sensing of ultra-trace Hg2+. The structural/surface features of the monolithic polymer template, prepared from glycidyl methacrylate (GMA) monomer crosslinked with ethylene glycol dimethacrylate (EGDMA), facilitate voluminous infusion and uniform decoration of ion-receptor molecules across the continuous porous poly(GMA-co-EGDMA) framework, resulting in a solid-state colorimetric sensory system. The bimodal polymer network's intriguing surface and structural morphology of the chromogenic sensor material are interpreted using scanning/transmission electron microscopy, X-ray diffraction, photoelectron spectroscopy, energy dispersive X-ray spectrometry, optical spectroscopy, surface area, porosity and thermal analysis. The proposed Hg2+ sensor offers a linear response range of 1-150 μg/L, with a detection and quantification limit of 0.29 and 0.97 μg/L, respectively. The poly(GMA-co-EGDMA)-BTDA sensor exhibits a quick ion-sensing response (40 s) with distinct color transitions from pastel yellow to olive as a function of increasing Hg2+ concentration. The matrix tolerance studies for the proposed sensory system reveal high selectivity for Hg2+, with a recovery of ≥99.2% in on-site environmental samples. The sensor material exhibits excellent data reproducibility and reliability up to seven cycles of reusability.
Collapse
Affiliation(s)
- Anju Pavoor Veedu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satheesh Kuppusamy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Liu H, Wang M, Huang G. A fluorescent sensor based on sulfur nanodots encapsulated into zeolitic imidazolate framework-8 for ultrasensitive detection of tartrazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123187. [PMID: 37499476 DOI: 10.1016/j.saa.2023.123187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
A new composite material (SDs@ZIF-8) was synthesized by integrating sulfur nanodots (SDs) into metal-organic frameworks (ZIF-8) through a facile one-step self-assembly strategy. The obtained SDs@ZIF-8 has not only the high adsorption performance of ZIF-8 but also the superior fluorescence characteristics of SDs. The composite featured good dispersibility, stable structure as well as excellent fluorescence in water solution, and can be used as an ideal fluorescent sensor for tartrazine detection. Due to the high specific surface area and adsorption performance of ZIF-8, the prepared composite material can significantly enrich tartrazine, further enhancing the sensitivity of analysis. The fluorescence of SDs @ZIF-8 composite can be effectively quenched by tartrazine through the inner filter effect. The sensing technique exhibited exceptional sensitivity, as evidenced by its impressive detection limit of 6.5 nM across a broad linear range spanning from 0.02 to 90 μM. In addition to its high sensitivity, the technique displayed rapid response times and excellent selectivity. Moreover, the fluorescent sensing technology we developed has been employed successfully for the detection of tartrazine in real samples, which is expected to promote the development of the food safety industry.
Collapse
Affiliation(s)
- Haijian Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China.
| | - Miao Wang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China
| |
Collapse
|
6
|
P V A, Deivasigamani P. Structurally engineered ion-receptor probe immobilized porous polymer platform as reusable solid-state chromogenic sensor for the ultra-trace sensing and recovery of mercury ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131431. [PMID: 37099907 DOI: 10.1016/j.jhazmat.2023.131431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
This study reports an efficacious solid-state optical sensor through the synergistic coalescences of an original chromoionophoric probe and a structurally engineered porous polymer monolith for the selective and sensitive colorimetric spotting of ultra-trace toxic mercury ions. The unique properties of the bimodal macro-/meso-pore structured polymer, i.e., poly(AAm-co-EGDMA) monolith, offer voluminous and uniform anchoring of probe molecules, i.e., (Z)-N-phenyl-2-(quinoline-4-yl-methylene)hydrazine-1-carbothioamide (PQMHC). The structure/surface features of the sensory system, i.e., surface area, pore dimensions, monolith framework, elemental mapping, and phase composition, were examined by p-XRD, XPS, FT-IR, HR-TEM-SAED, FE-SEM-EDAX, and BET/BJH analysis. The sensor's ion-capturing ability was established through naked eye color transition and UV-Vis-DRS response. The sensor exhibits a strong binding affinity for Hg2+, with a linear signal response in the concentration range of 0-200 μg/L (r2 >0.999), with a detection limit of 0.33 μg/L. The analytical parameters were optimized to facilitate pH-dependent visual sensing of ultra-trace Hg2+ in ≤ 30 s. The sensor exhibits high chemical/physical stability characteristics, with reliable data reproducibility (RSD ≤1.94 %), while testing with natural/synthetic water and cigarette samples. The proposed work offers a cost-effective and reusable naked-eye sensory system for the selective sensing of ultra-trace Hg2+, with potential prospects of commercialization considering their simplicity, viability, and reliability.
Collapse
Affiliation(s)
- Anju P V
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Kuppusamy S, Deivasigamani P. Chromophoric Ion Receptor-Decorated Porous Monolithic Polymer for the Solid-State Naked Eye Sensing of Hg(II): An Experimental and Theoretical Approach. ACS OMEGA 2022; 7:41461-41471. [PMID: 36406566 PMCID: PMC9670289 DOI: 10.1021/acsomega.2c05239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2023]
Abstract
The current work presents a perspective to obliterate toxic Hg(II) from an aqueous environment, a strategic environmental remediation and decontamination measure. We report a simple, efficient, and reusable solid-state visual sensing strategy for the selective detection and quantitative recovery of ultratrace Hg(II). The capture of Hg(II) ions was effectuated using a macro-/mesoporous polymer monolith uniformly decorated with an azo-based chromophoric ion receptor, i.e., 7-((1H-benzo[d]imidazol-2-yl)diazenyl)quinolin-8-ol (BIDQ). The porous polymer template was synthesized through free radical polymerization of gylcidylmethacrylate and ethylene glycol dimethacrylate, leading to distinct structural and surface properties that offer exclusive solid-state colorimetric selectivity for Hg(II) upon restricted spatial dispersion of the ion receptor. The sensor provides a broad linear response range of 1-200 μg/L, with an outstanding detection limit of 0.2 μg/L for Hg(II) ions, thus effectuating reliable and reproducible sensing. Optimizing analytical parameters such as solution pH, receptor concentration, sensor quantity, kinetics, temperature, and matrix interference proved to be promising for the real-time monitoring of toxic mercury ions from aqueous/industrial systems, with maximum response in the pH range of 7.5-8.0, with a response time of ≤80 s. Density functional theory (DFT) calculations were employed to study the electronic structure of BIDQ upon chelating with Hg(II) ions, using 6-311G and LAND2Z basis sets.
Collapse
|
8
|
Alharbi A, Al-Ahmed ZA, El-Metwaly NM, Shahat A, El-Bindary M. A novel strategy for preparing metal-organic framework as a smart material for selective detection and efficient extraction of Pd(II) and Au(III) ions from E-wastes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Yakout AA, Basha MT, Shahat A. Robust and Ultrasensitive Chemosensor Based on Bifunctionalized MIL‐101(Al) for Fluorescent Detection of Ferric Ions in Serum and Pharmaceutical Tablets. ChemistrySelect 2022. [DOI: 10.1002/slct.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Amr A. Yakout
- Department of Chemistry College of Science University of Jeddah Jeddah Saudi Arabia
- Department of Chemistry Faculty of Science Alexandria University Alexandria Egypt
| | - Maram T. Basha
- Department of Chemistry College of Science University of Jeddah Jeddah Saudi Arabia
| | - Ahmed Shahat
- Department of Chemistry Faculty of Science Suez University 43518 Suez Egypt
| |
Collapse
|
10
|
High Quality TaS 2 Nanosheet SPR Biosensors Improved Sensitivity and the Experimental Demonstration for the Detection of Hg 2. NANOMATERIALS 2022; 12:nano12122075. [PMID: 35745416 PMCID: PMC9228406 DOI: 10.3390/nano12122075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023]
Abstract
TaS2 as transition metal dichalcogenide (TMD) two-dimensional (2D) material has sufficient unstructured bonds and large inter-layer spacing, which highly supports transporting and absorbing mercury ions. The structural characterizations and simulation data show that an SPR sensor with high sensitivity can be obtained with a TaS2 material-modified sensitive layer. In this paper, the role of TaS2 nanoparticles in an SPR sensor was explored by simulation and experiment, and the TaS2 layer in an SPR sensor was characterized by SEM, elemental mapping, XPS, and other methods. The application range of structured TaS2 nanoparticles is explored, these TaS2 based sensors were applied to detect Hg2+ ions at a detection limit approaching 1 pM, and an innovative idea for designing highly sensitive detection techniques is provided.
Collapse
|
11
|
Abd El-Fattah W, Al-Farraj ES, Hamadi NB, Alharbi A, Shahat A. Functionalized MOF as a Sensitive Spectroscopic Probe for Hg 2+, Co 2+, and Al 3+ Ions Detection in Aqueous Media. ACS OMEGA 2022; 7:17483-17491. [PMID: 35647427 PMCID: PMC9134411 DOI: 10.1021/acsomega.2c02021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
A modified metal-organic framework (MOF) named Al-MIL-53-N=SA-Br was synthesized via a Schiff-base reaction between the MOFs (Al-MIL-53-NH2) and 5-bromo salicylaldehyde. The robust functionalized Al-MIL-53-N=SA-Br was used as a novel spectrophotometric sensor for detecting Hg2+, Co2+, and Al3+ ions. In a wide range of concentrations, the absorption spectral intensity of Al-MIL-53-N=SA-Br increased linearly upon increasing the concentration of Hg2+, Co2+, and Al3+ ions. The limit of detection (LOD) of the proposed Al-MIL-53-N=SA-Br sensor reached 1.52 ppm of Hg2+ ion (7.56 × 10-9 M). Therefore, this study introduces a novel ratiometric Hg2+, Co2+, and Al3+ ions chemosensor. Simple treatment using thiourea or ethylenediaminetetraacetic acid can remove the metal ions from the used sensor and use it many times with a high efficiency. In addition, the Al-MIL-53-N=SA-Br sensor has a high adsorption capacity for these metal ions. The design of the robust Al-MIL-53-N=SA-Br sensor provided high stability, reproducibility, selectivity, high sensitivity, and a facile sensing design. Furthermore, the good absorption spectral stability of Al-MIL-53-N=SA-Br in aqueous media, the broad linear in sensing, and the low LOD of the Hg2+, Co2+, and Al3+ ions show its high potential in determining these ions in real water.
Collapse
Affiliation(s)
- Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port-Said
University, Port-Said 42526, Egypt
| | - Eida S. Al-Farraj
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Saudi Arabia
| | - Ahmed Alharbi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Shahat
- Chemistry
Department, Faculty of Science, Suez University, Suez 43518, Egypt
| |
Collapse
|
12
|
Sharma R, Lee HI. Recent advances in polymeric chemosensors for the detection and removal of mercury ions in complex aqueous media. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2054348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rini Sharma
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
13
|
Al‐Qahtani SD, Shah R, Aljuhani E, Al‐Ahmed ZA, Habeebullah TM, Saad F, Shahat A, El‐Metwaly NM. Development of a Sensitive and Selective Optical Sensor for Measuring Ultra‐Trace Amounts of Fe(II) and Fe(III) Ions in Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Salhah D. Al‐Qahtani
- Department of Chemistry College of Science Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Reem Shah
- Department of Chemistry Faculty of Applied Science Umm Al Qura University Makkah Saudi-Arabia
| | - Enas Aljuhani
- Department of Chemistry Faculty of Applied Science Umm Al Qura University Makkah Saudi-Arabia
| | - Zehbah A. Al‐Ahmed
- College of Art and Science Dhahran Aljounb King Khalid University Saudi Arabia
| | - Turki M. Habeebullah
- Department of Environment and Health Research Custodian of two holy mosques Institute for Hajj and Umrah Research Umm-Al-Qura University Makkah
| | - Fawaz Saad
- Department of Chemistry Faculty of Applied Science Umm Al Qura University Makkah Saudi-Arabia
| | - Ahmed Shahat
- Department of Chemistry Faculty of Science Suez University Suez 43518 Egypt
| | - Nashwa M. El‐Metwaly
- Department of Chemistry Faculty of Applied Science Umm Al Qura University Makkah Saudi-Arabia
- Department of Chemistry Faculty of Science Mansoura University El-Gomhoria Street Egypt
| |
Collapse
|
14
|
Guo H, Peng L, Wu N, Liu B, Wang M, Chen Y, Pan Z, Liu Y, Yang W. A novel fluorescent Si/CDs for highly sensitive Hg2+ sensing in water environment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Shahat A, Elamin NY, Abd El-Fattah W. Spectrophotometric and Fluorometric Methods for the Determination of Fe(III) Ions in Water and Pharmaceutical Samples. ACS OMEGA 2022; 7:1288-1298. [PMID: 35036790 PMCID: PMC8756786 DOI: 10.1021/acsomega.1c05899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chemical sensors based on mesoporous silica nanotubes (MSNTs) for the quick detection of Fe(III) ions have been developed. The nanotubes' surface was chemically modified with phenolic groups by reaction of the silanol from the silica nanotubes surface with 3-aminopropyltriethoxysilane followed by reaction with 3-formylsalicylic acid (3-fsa) or 5-formylsalicylic acid (5-fsa) to produce the novel nanosensors. The color of the resultant 3-fsa-MSNT and 5-fsa-MSNT sensors changes once meeting a very low concentration of Fe(III) ions. Color changes can be seen by the naked eye and tracked with a smartphone or fluorometric or spectrophotometric techniques. Many experimental studies have been conducted to find out the optimum conditions for colorimetric and fluorometric determining of the Fe(III) ions by the two novel sensors. The response time, for the two sensors, that is necessary to achieve a steady spectroscopic signal was less than 15 s. The suggested methods were validated in terms of the lowest limit of detection (LOD), the lowest limit of quantification (LOQ), linearity, and precision according to International Conference on Harmonization (ICH) guidelines. The lowest limit of detection that was obtained from the spectrophotometric technique was 18 ppb for Fe(III) ions. In addition, the results showed that the two sensors can be used eight times after recycling using 0.1 M EDTA as eluent with high efficiency (90%). As a result, the two sensors were successfully used to determine Fe(III) in a variety of real samples (tap water, river water, seawater, and pharmaceutical samples) with great sensitivity and selectivity.
Collapse
Affiliation(s)
- Ahmed Shahat
- Chemistry
Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Nuha Y. Elamin
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia
- Department
of Chemistry, Sudan University of Science
and Technology, P.O. Box 407, Khartoum 11111, Sudan
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port-Said
University, Port-Said 43518, Egypt
| |
Collapse
|
16
|
Eco-friendly green synthesis of functionalized mesoporous silica nanospheres for the determination of Al(III) ions in multiple samples of different kinds of water. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Feng Y, Wang Y, Ying Y. Structural design of metal–organic frameworks with tunable colorimetric responses for visual sensing applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Saleh M, Mohamed MA, Shahat A, Allam NK. Sensitive Determination of SARS-COV-2 and the Anti-hepatitis C Virus Agent Velpatasvir Enabled by Novel Metal-Organic Frameworks. ACS OMEGA 2021; 6:26791-26798. [PMID: 34661033 PMCID: PMC8515823 DOI: 10.1021/acsomega.1c04525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report on the electrochemical determination of velpatasvir (VLP) as the main constituent of Epclusa, a SARS-COV-2 and anti-hepatitis C virus (HCV) agent, using a novel metal-organic framework (MOF). The NH2-MIL-53(Al) MOF was successfully modified with 5-bromo-salicylaldehyde to synthesize 5-BSA=N-MIL-53(Al) MOF. The synthesized MOF has been characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The modified MOF showed higher electrochemical activity and response than the bare NH2-MIL-53(Al) MOF. Compared to the bare carbon paste electrode (CPE), the 5-BSA=N-MIL-53(Al)/CPE platform was shown to enhance the electrochemical oxidation and detection of the anti-SARS-COV-2 and anti-HCV agent. Under optimized conditions, the 5-BSA=N-MIL-53(Al)/CPE platform showed a linear range of 1.11 × 10-6 to 1.11 × 10-7 and 1.11 × 10-7 to 25.97 × 10-6 M Britton-Robinson buffer (pH 7) with a detection limit and limit of quantification of 8.776 × 10-9 and 2.924 × 10-8 M, respectively. Repeatability, storage stability, and reproducibility in addition to selectivity studies and interference studies were conducted to illustrate the superiority of the electrode material. The study also included a highly accurate platform for the determination of VLP concentrations in both urine and plasma samples with reasonable recovery.
Collapse
Affiliation(s)
- Mahmoud
A. Saleh
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| | - Mona A. Mohamed
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| | - Ahmed Shahat
- Chemistry
Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Nageh K. Allam
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| |
Collapse
|
19
|
Yan X, Li P, Song X, Li J, Ren B, Gao S, Cao R. Recent progress in the removal of mercury ions from water based MOFs materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
21
|
Chen Y, Tang J, Wang S, Zhang L. Ninhydrin-functionalized chitosan for selective removal of Pb(II) ions: Characterization and adsorption performance. Int J Biol Macromol 2021; 177:29-39. [PMID: 33607139 DOI: 10.1016/j.ijbiomac.2021.02.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/22/2021] [Accepted: 02/14/2021] [Indexed: 01/19/2023]
Abstract
A chitosan-based adsorbents (CS-Ninhydrin) was prepared by grafting ninhydrin for Pb(II) ions adsorption. SEM-EDS, XRD and FTIR analysis were used to characterize the synthesized CS-Ninhydrin. The static adsorption experiments showed that CS-Ninhydrin had a good removal rate for Pb(II) ions in a wide range of pH 3 to 7, quickly reached equilibrium (120 min) and had a higher adsorption capacity (196 mg/g). Pseudo second-order and Langmuir models showed that the adsorption process of Pb(II) by CS-Ninhydrin was a single-layer chemical adsorption. Temperature experiments showed that the reaction was a spontaneous exothermic process. In the wastewater experiment, CS-Ninhydrin showed an excellent selectivity to Pb(II) ions. The reusability of CS-Ninhydrin was perfect after five adsorption-desorption cycles. The main adsorption mechanism was the chelating and electrostatic action between N and O groups in CS-Ninhydrin and Pb(II) ions. Therefore, the new adsorbent CS-Ninhydrin was expected to promote the wide application of chitosan in Pb(II) adsorption.
Collapse
Affiliation(s)
- Yingbi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Jiali Tang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China.
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China.
| |
Collapse
|
22
|
Madhesan T, Mohan AM. Porous silica and polymer monolith architectures as solid-state optical chemosensors for Hg 2+ ions. Anal Bioanal Chem 2020; 412:7357-7370. [PMID: 32813043 DOI: 10.1007/s00216-020-02870-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
We demonstrate a simple strategy to concoct a competent solid-state opto-chemosensor for the selective and sensitive visual detection of Hg2+ ions. The sensor fabrication involves the utilization of indigenously prepared mesoporous silica and polymer monoliths as probe anchoring templates and 8-hydroxy-7-(4-n-butylphenylazo) quinoline (HBPQ) as the chromo-ionophoric probe for Hg2+ sensing. Both the monoliths are designed with discrete structural and morphological features to serve as efficient host templates. The structural and surface features of the monoliths are characterized using p-XRD, TEM, SEM, SAED, EDAX, XPS, and N2 isotherm analysis. The synergetic features of monolith structural hierarchy along with the probe's selective chelating ability enable rapid signal response and remarkable ion selectivity for Hg2+. The solid-state sensors evince a linear signal response from 0.6 to 150 μg/L for Hg2+ recognition, with superior data authenticity and replication that is preceded by an RSD value of ≤ 2.25% when tested with real water samples.Graphical abstract Mesoporous silica and polymer monolith architects hosting HBPQ probe molecules demonstrate an excellent visual sensing of ultra-trace (μg/L) Hg2+ in various water samples with a striking color transition from light orange to dark red upon complexation of probe with Hg2+. The solid-state sensors are Hg2+ ion selective, super-responsive, real-time applicable, and also reusable.
Collapse
Affiliation(s)
- Thirumalai Madhesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
23
|
Hassan HM, Shahat A, Azzazy HM, El-aal RMA, El-Sayed WN, Elwahed AA, Awual MR. A novel and potential chemical sensor for effective monitoring of Fe(II) ion in corrosion systems of water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104578] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Hou X, Yan CC, Xu X, Liang AQ, Song ZW, Tang SF. Two-dimensional layered lanthanide diphosphonates: synthesis, structures and sensing properties toward Fe3+ and Cr2O72−. Dalton Trans 2020; 49:3809-3815. [DOI: 10.1039/c9dt03531a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new lanthanide phosphonates with two-dimensional layered crystal structures have been synthesized and investigated for the optical sensing of Fe3+ and Cr2O72− ions.
Collapse
Affiliation(s)
- Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology
- College of Life Science
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Chong-Chong Yan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiuling Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Ai-Qin Liang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Wei Song
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
25
|
Metal organic framework assisted in situ complexation for miniaturized solid phase extraction of organic mercury in fish and Dendrobium officinale. Talanta 2019; 209:120598. [PMID: 31892039 DOI: 10.1016/j.talanta.2019.120598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Zirconium-based metal-organic frameworks, namely Zr-based MOF, was employed as adsorbent material in the miniaturized solid phase extraction of organic mercury compounds in food prior to capillary electrophoresis-diode array detector analysis. The synthesized adsorbent was characterized by different spectroscopic techniques. Parameters influencing the extraction and complexation of methylmercury chloride, ethylmercury chloride and phenylmercury chloride such as type of eluent solvent, type and amount of adsorbent were investigated. In addition, linear ranges contained 2.00-300.00 ng mL-1 for MeHg+, 5.00-500.00 ng mL-1 for EtHg+ and PhHg+, and the established method presented good linearity (R2 ≥ 0.998). Under the optimized experimental conditions, the ranges of detection limit and quantitation limit were 0.022-0.067 ng mL-1 and 0.073-0.220 ng mL-1, respectively. The relative standard deviations of intra- and inter-day analysis were less than 3.2 and 3.1%, respectively. Trueness of the present method was successfully accomplished by means of the recovery assays (81.4-98.5%) in the blank samples with two concentration levels. The repeatability %RSD of the method was lower than 2.7%. Overall, the developed approach proved to have the latent capability to be utilized in routine analysis of organic mercury compounds in fish and Dendrobium officinale.
Collapse
|
26
|
Zhang L, Wang J, Du T, Zhang W, Zhu W, Yang C, Yue T, Sun J, Li T, Wang J. NH2-MIL-53(Al) Metal–Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg2+. Inorg Chem 2019; 58:12573-12581. [DOI: 10.1021/acs.inorgchem.9b01242] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi’an 710065, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
27
|
Venkateswarlu S, Govindaraju S, Sangubotla R, Kim J, Lee MH, Yun K. Biosynthesized Highly Stable Au/C Nanodots: Ideal Probes for the Selective and Sensitive Detection of Hg 2+ Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E245. [PMID: 30759765 PMCID: PMC6409943 DOI: 10.3390/nano9020245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 01/14/2023]
Abstract
The enormous ongoing industrial development has caused serious water pollution which has become a major crisis, particularly in developing countries. Among the various water pollutants, non-biodegradable heavy metal ions are the most prevalent. Thus, trace-level detection of these metal ions using a simple technique is essential. To address this issue, we have developed a fluorescent probe of Au/C nanodots (GCNDs-gold carbon nanodots) using an eco-friendly method based on an extract from waste onion leaves (Allium cepa-red onions). The leaves are rich in many flavonoids, playing a vital role in the formation of GCNDs. Transmission electron microscopy (TEM) and Scanning transmission electron microscopy-Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping clearly indicated that the newly synthesized materials are approximately 2 nm in size. The resulting GCNDs exhibited a strong orange fluorescence with excitation at 380 nm and emission at 610 nm. The GCNDs were applied as a fluorescent probe for the detection of Hg2+ ions. They can detect ultra-trace concentrations of Hg2+ with a detection limit of 1.3 nM. The X-ray photoelectron spectroscopy results facilitated the identification of a clear detection mechanism. We also used the new probe on a real river water sample. The newly developed sensor is highly stable with a strong fluorescent property and can be used for various applications such as in catalysis and biomedicine.
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Nanochemistry, Gachon University, Gyeonggi-do 13120, Korea.
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea.
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-do 13120, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|
28
|
A critical review on the metal sensing capabilities of optically active nanomaterials: Limiting factors, mechanism, and performance evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Samanta P, Desai AV, Sharma S, Chandra P, Ghosh SK. Selective Recognition of Hg2+ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorg Chem 2018; 57:2360-2364. [DOI: 10.1021/acs.inorgchem.7b02426] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Partha Samanta
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Aamod V. Desai
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Shivani Sharma
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Priyanshu Chandra
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sujit K. Ghosh
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Centre for Research in Energy & Sustainable Materials, IISER Pune, India
| |
Collapse
|