1
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
2
|
Holliday EG, Zhang B. Machine learning-enabled colorimetric sensors for foodborne pathogen detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:179-213. [PMID: 39103213 DOI: 10.1016/bs.afnr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In the past decade, there have been various advancements to colorimetric sensors to improve their potential applications in food and agriculture. One application of growing interest is sensing foodborne pathogens. There are unique considerations for sensing in the food industry, including food sample destruction, specificity amidst a complex food matrix, and high sensitivity requirements. Incorporating novel technology, such as nanotechnology, microfluidics, and smartphone app development, into colorimetric sensing methodology can enhance sensor performance. Nonetheless, there remain challenges to integrating sensors with existing food safety infrastructure. Recently, increasingly advanced machine learning techniques have been employed to facilitate nondestructive, multiplex detection for feasible assimilation of sensors into the food industry. With its ability to analyze and make predictions from highly complex data, machine learning holds potential for advanced yet practical colorimetric sensing of foodborne pathogens. This article summarizes recent developments and hurdles of machine learning-enabled colorimetric foodborne pathogen sensing. These advancements underscore the potential of interdisciplinary, cutting-edge technology in providing safer and more efficient food systems.
Collapse
Affiliation(s)
- Emma G Holliday
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
3
|
Dicle Y, Karamese M. Biosensors for the detection of pathogenic bacteria: current status and future perspectives. Future Microbiol 2024; 19:281-291. [PMID: 38305241 DOI: 10.2217/fmb-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pathogenic microorganisms pose significant threats to human health, food safety and environmental integrity. Rapid and accurate detection of these pathogens is essential to mitigate their impact. Fast, sensitive detection methods such as biosensors also play a critical role in preventing outbreaks and controlling their spread. In recent years, biosensors have emerged as a revolutionary technology for pathogen detection. This review aims to present the current developments in biosensor technology, investigate the methods by which these developments are used in the detection of pathogenic bacteria and highlight future perspectives on the subject.
Collapse
Affiliation(s)
- Yalcin Dicle
- Department of Medical Microbiology, Mardin Artuklu University, Faculty of Medicine, Mardin, 47200, Turkey
| | - Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| |
Collapse
|
4
|
Khan S, Monteiro JK, Prasad A, Filipe CDM, Li Y, Didar TF. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300875. [PMID: 37085965 DOI: 10.1002/adma.202300875] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Prasad A, Khan S, Monteiro JK, Li J, Arshad F, Ladouceur L, Tian L, Shakeri A, Filipe CDM, Li Y, Didar TF. Advancing In Situ Food Monitoring through a Smart Lab-in-a-Package System Demonstrated by the Detection of Salmonella in Whole Chicken. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302641. [PMID: 37358057 DOI: 10.1002/adma.202302641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/16/2023] [Indexed: 06/27/2023]
Abstract
With food production shifting away from traditional farm-to-table approaches to efficient multistep supply chains, the incidence of food contamination has increased. Consequently, pathogen testing via inefficient culture-based methods has increased, despite its lack of real-time capabilities and need for centralized facilities. While in situ pathogen detection would address these limitations and enable individual product monitoring, accurate detection within unprocessed, packaged food products without user manipulation has proven elusive. Herein, "Lab-in-a-Package" is presented, a platform capable of sampling, concentrating, and detecting target pathogens within closed food packaging, without intervention. This system consists of a newly designed packaging tray and reagent-infused membrane that can be paired universally with diverse pathogen sensors. The inclined food packaging tray maximizes fluid localization onto the sensing interface, while the membrane acts as a reagent-immobilizing matrix and an antifouling barrier for the sensor. The platform is substantiated using a newly discovered Salmonella-responsive nucleic acid probe, which enables hands-free detection of 103 colony forming units (CFU) g-1 target pathogen in a packaged whole chicken. The platform remains effective when contamination is introduced with toolsand surfaces, ensuring widespread efficacy. Its real-world use for in situ detection is simulated using a handheld fluorescence scanner with smartphone connectivity.
Collapse
Affiliation(s)
- Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Fatima Arshad
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| |
Collapse
|
6
|
Mousavi ZE, Hunt K, Koolman L, Butler F, Fanning S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023; 11:1379. [PMID: 37374881 DOI: 10.3390/microorganisms11061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The powdered formula market is large and growing, with sales and manufacturing increasing by 120% between 2012 and 2021. With this growing market, there must come an increasing emphasis on maintaining a high standard of hygiene to ensure a safe product. In particular, Cronobacter species pose a risk to public health through their potential to cause severe illness in susceptible infants who consume contaminated powdered infant formula (PIF). Assessment of this risk is dependent on determining prevalence in PIF-producing factories, which can be challenging to measure with the heterogeneity observed in the design of built process facilities. There is also a potential risk of bacterial growth occurring during rehydration, given the observed persistence of Cronobacter in desiccated conditions. In addition, novel detection methods are emerging to effectively track and monitor Cronobacter species across the food chain. This review will explore the different vehicles that lead to Cronobacter species' environmental persistence in the food production environment, as well as their pathogenicity, detection methods and the regulatory framework surrounding PIF manufacturing that ensures a safe product for the global consumer.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh Mousavi
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Food Science and Engineering, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj 6719418314, Iran
| | - Kevin Hunt
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Francis Butler
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Zhang H, Xu G, Chen Y, Li X, Wang S, Jiang F, Zhan P, Lu C, Cao X, Ye Y, Tao Y. Electrochemical Detection of ompA Gene of C. sakazakii Based on Glucose-Oxidase-Mimicking Nanotags of Gold-Nanoparticles-Doped Copper Metal-organic Frameworks. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094396. [PMID: 37177600 PMCID: PMC10181677 DOI: 10.3390/s23094396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
The present work developed an electrochemical genosensor for the detection of virulence outer membrane protein A (ompA, tDNA) gene of Cronobacter sakazakii (C. sakazakii) by exploiting the excellent glucose-oxidase-mimicking activity of copper Metal-organic frameworks (Cu-MOF) doped with gold nanoparticle (AuNPs). The signal nanotags of signal probes (sDNA) that biofunctionalized AuNPs@Cu-MOF (sDNA-AuNPs@Cu-MOF) were designed using an Au-S bond. The biosensor was prepared by immobilization capture probes (cDNA) onto an electrodeposited AuNPs-modified glassy carbon electrode (GCE). AuNPs@Cu-MOF was introduced onto the surface of the GCE via a hybridization reaction between cDNA and tDNA, as well as tDNA and sDNA. Due to the enhanced oxidase-mimicking activity of AuNPs@Cu-MOF to glucose, the biosensor gave a linear range of 1.0 × 10-15 to 1.0 × 10-9 mol L-1 to tDNA with a detection limit (LOD) of 0.42 fmol L-1 under optimized conditions using differential pulse voltammetry measurement (DPV). It can be applied in the direct detection of ompA gene segments in total DNA extracts from C. sakazakii with a broad linear range of 5.4-5.4 × 105 CFU mL-1 and a LOD of 0.35 CFU mL-1. The biosensor showed good selectivity, fabricating reproducibility and storage stability, and can be used for the detection of ompA gene segments in real samples with recovery between 87.5% and 107.3%.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guiqing Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuming Chen
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Xu Li
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shaopeng Wang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feihao Jiang
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Pengyang Zhan
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Chuanfu Lu
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlai Tao
- Anhui Institute of Food and Drug Inspection, Hefei 230051, China
| |
Collapse
|
8
|
Ghafary Z, Hallaj R, Salimi A, Khosrowbakhsh F. A novel highly sensitive compilation-detachment fluorescence sensing strategy based on RNA-cleavage DNAzyme for MDA-MB-231 breast cancer biomarker determination. J Mater Chem B 2023; 11:1568-1579. [PMID: 36722940 DOI: 10.1039/d2tb02467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herein, we designed a novel and highly sensitive fluorescence multicomponent detachable platform for MDA-MB-231 breast cancer cell detection as a model. The RNA cleavage DNAzyme was used as a central operator of the multicomponent probe through which compilation and induced detachment of probe was done. During the compilation step, the dsDNA-Sybr green 1 complexes on gold nanoparticles (GNP@dsDNA@SG1) were assembled. The intercalated Sybr green in the DNA structure has been used as an amplified signal generator on one site of DNAzyme and magnetic nanoparticles (MNP) act as a biological carrier and probe collector on the opposite side. The enzyme activator co-factor (MDA-MB-231 cell cytoplasmic protein) provokes the activation of the catalytic core of enzyme sequence in the DNAzyme molecule, followed by cleavage reaction in the substrate sequence and releasing GNP@ dsDNA@SG1 into the solution. The results indicate that the Sybr green emission fluorescence (520 nm) increases with the increment of MDA-MB-231 protein concentration in the linear dynamic range of 8.10 × 10-2 to 1.95 ng ml-1 (0.77 × 10-3-0.019 cell ml-1) with a detection limit (LOD) of 1/72 × 10-2 pg ml-1 under optimal conditions. The proposed immunosensor has great potential in developing ultrasensitive and rapid diagnostic platforms.
Collapse
Affiliation(s)
- Zhaleh Ghafary
- Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj, Iran. .,Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj, Iran. .,Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Farnosh Khosrowbakhsh
- Department of Bioscience & Biotechnology, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
9
|
Ning Q, Chen Q, Huang Y, Wang Y, Wang Y, Liu Z. Development of a Hg2+-Stabilized Double-Stranded DNA Probe for Low-Cost Visual Detection of Glutathione in Food Based on G-Quadruplex/hemin DNAzymes. JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77:1517-1525. [DOI: 10.1134/s1061934822120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 05/14/2025]
|
10
|
Ning Q, Wang Y, Wang Y, Tu F, Chen X, Chen Q, Liu Z. Development of an enhanced visual signal amplification assay for GSH detection with DNA-cleaving DNAzyme as a trigger. SENSORS AND ACTUATORS B: CHEMICAL 2022; 365:131932. [DOI: 10.1016/j.snb.2022.131932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
11
|
Xu X, Zhu L, Wang X, Lan X, Chu H, Tian H, Xu W. Sandwich capture ultrasensitive sensor based on biohybrid interface for the detection of Cronobacter sakazakii. Appl Microbiol Biotechnol 2022; 106:4287-4296. [PMID: 35616722 DOI: 10.1007/s00253-022-11978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
A simple, rapid and ultrasensitive visual sensing method for the detection of Cronobacter sakazakii (C. sakazakii) based on a biohybrid interface was established. During the entire sensing process, quadruple-cascade amplification showed its superior sensing performance. First, the prepared immunomagnetic beads (IMB) were used to isolate and enrich specific targets from the food matrix. After adding the fusion aptamer, the aptamer sequence specifically recognized the target and formed the immune sandwich structure of antibody-target-fusion aptamer. In addition, the fusion aptamer also included the template sequence of exponential amplification reaction (EXPAR), which contained the antisense sequence of the G-rich sequence. Therefore, a large number of G-rich sequences can be generated after EXPAR can be triggered in the presence of Bst. DNA polymerase, nicking endonuclease, cDNA, and dNTP. They were self-assembled into G-quadruplex structures and then combined with hemin to form G4/hemin DNAzyme, resulting in visible coloration and measuring absorbance at 450 nm for quantitative detection. The assay showed a limit of detection (LOD) of 2 CFU/mL in pure culture and 12 CFU/g in milk powder in optimal conditions. This method provides a promising strategy for rapid and point-of-care testing (POCT) since it does not require DNA extraction, medium culturing, and expensive instrumentation. KEY POINTS: •Single-cell level detection of C. sakazakii with ultrasensitive and rapidness •The fusion aptamer integrated recognition and amplification •Sensing analysis of C. sakazakii based on cascade amplification of biohybrid interface.
Collapse
Affiliation(s)
- Xiuyuan Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China
| | - Xinxin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, Beijing, 100083, People's Republic of China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China. .,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, Beijing, 100083, People's Republic of China.
| |
Collapse
|
12
|
Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bai X, Chen G, Wang Z, Xie G, Deng M, Xu H. Simultaneous detection of Bacillus cereus and Staphylococcus aureus by teicoplanin functionalized magnetic beads combined with triplex PCR. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
DEOXYRIBOZYMES IN DETECTION OF PATHOGENIC BACTERIA. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. The purpose of the review was to analyze the use of DNAzyme biosensors for the detection of pathogens. In the recent years, deoxyribozymes (DNAzymes) have a significant impact as biosensors in diverse fields, from detection of metal ions in the environment to theranostic applications and detection of microorganisms. Although routinely used sophisticated instrumental methods are available to detect pathogenic bacterial contamination, they involve time-consuming, complicated sample pre-treatment and expensive instruments. As an alternative, pathogen-specific DNAzymes have demonstrated a series of advantages: a non-destructive rapid analysis technique with in situ and real-time detection of bacteria with high sensitivity and selectivity. A wide range of pathogen-specific DNAzymes has been developed using colorimetric and fluorescence-based detections for pathogenic bacterial contamination in various samples. The current review summarizes the in vitro selection of pathogen-specific DNAzymes, various strategies utilized in the sensor designs, and their potential use in theranostic applications.
Collapse
|
15
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
16
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
17
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|