Dias CR, Jeger S, Osso JA, Müller C, De Pasquale C, Hohn A, Waibel R, Schibli R. Radiolabeling of rituximab with (188)Re and (99m)Tc using the tricarbonyl technology.
Nucl Med Biol 2010;
38:19-28. [PMID:
21220126 DOI:
10.1016/j.nucmedbio.2010.05.010]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/09/2010] [Accepted: 05/14/2010] [Indexed: 12/17/2022]
Abstract
INTRODUCTION
The most successful clinical studies of immunotherapy in patients with non-Hodgkin's lymphoma (NHL) use the antibody rituximab (RTX) targeting CD20(+) B-cell tumors. Rituximab radiolabeled with β(-) emitters could potentiate the therapeutic efficacy of the antibody by virtue of the particle radiation. Here, we report on a direct radiolabeling approach of rituximab with the (99m)Tc- and (188)Re-tricarbonyl core (IsoLink technology).
METHODS
The native format of the antibody (RTX(wt)) as well as a reduced form (RTX(red)) was labeled with (99m)Tc/(188)Re(CO)(3). The partial reduction of the disulfide bonds to produce free sulfhydryl groups (-SH) was achieved with 2-mercaptoethanol. Radiolabeling efficiency, in vitro human plasma stability as well as transchelation toward cysteine and histidine was investigated. The immunoreactivity and binding affinity were determined on Ramos and/or Raji cells expressing CD20. Biodistribution was performed in mice bearing subcutaneous Ramos lymphoma xenografts.
RESULTS
The radiolabeling efficiency and kinetics of RTX(red) were superior to that of RTX(wt) ((99m)Tc: 98% after 3 h for RTX(red) vs. 70% after 24 h for RTX(wt)). (99m)Tc(CO)(3)-RTX(red) was used without purification for in vitro and in vivo studies whereas (188)Re(CO)(3)-RTX(red) was purified to eliminate free (188)Re-precursor. Both radioimmunoconjugates were stable in human plasma for 24 h at 37 °C. In contrast, displacement experiments with excess cysteine/histidine showed significant transchelation in the case of (99m)Tc(CO)(3)-RTX(red) but not with pre-purified (188)Re(CO)(3)-RTX(red). Both conjugates revealed high binding affinity to the CD20 antigen (K(d) = 5-6 nM). Tumor uptake of (188)Re(CO)(3)-RTX(red) was 2.5 %ID/g and 0.8 %ID/g for (99m)Tc(CO)(3)-RTX(red) 48 h after injection. The values for other organs and tissues were similar for both compounds, for example the tumor-to-blood and tumor-to-liver ratios were 0.4 and 0.3 for (99m)Tc(CO)(3)-RTX(red) and for (188)Re(CO)(3)-RTX(red) 0.5 and 0.5 (24 h pi).
CONCLUSION
Rituximab could be directly and stably labeled with the matched pair (99m)Tc/(188)Re using the IsoLink technology under retention of the biological activity. Labeling kinetics and yields need further improvement for potential routine application in radioimmunodiagnosis and therapy.
Collapse