Baake E, Cordero F, Di Gaspero E. The mutation process on the ancestral line under selection.
Theor Popul Biol 2024;
158:60-75. [PMID:
38641140 DOI:
10.1016/j.tpb.2024.04.004]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
We consider the Moran model of population genetics with two types, mutation, and selection, and investigate the line of descent of a randomly-sampled individual from a contemporary population. We trace this ancestral line back into the distant past, far beyond the most recent common ancestor of the population (thus connecting population genetics to phylogeny), and analyse the mutation process along this line. To this end, we use the pruned lookdown ancestral selection graph (Lenz et al., 2015), which consists of a set of potential ancestors of the sampled individual at any given time. Relative to the neutral case (that is, without selection), we obtain a general bias towards the beneficial type, an increase in the beneficial mutation rate, and a decrease in the deleterious mutation rate. This sheds new light on previous analytical results. We discuss our findings in the light of a well-known observation at the interface of phylogeny and population genetics, namely, the difference in the mutation rates (or, more precisely, mutation fluxes) estimated via phylogenetic methods relative to those observed in pedigree studies.
Collapse