1
|
Schuurman BB, Lousberg RL, Schreiber JU, van Amelsvoort TAMJ, Vossen CJ. A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain. J Clin Med 2024; 13:2813. [PMID: 38792353 PMCID: PMC11122542 DOI: 10.3390/jcm13102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Background and Aim: Non-pharmacological treatments such as electroencephalogram (EEG) neurofeedback have become more important in multidisciplinary approaches to treat chronic pain. The aim of this scoping review is to identify the literature on the effects of EEG neurofeedback in reducing pain complaints in adult chronic-pain patients and to elaborate on the neurophysiological rationale for using specific frequency bands as targets for EEG neurofeedback. Methods: A pre-registered scoping review was set up and reported following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for Scoping Reviews (PRISMA-ScR). The data were collected by searching for studies published between 1985 and January 2023 in PubMed, EMBASE, and PsycINFO. Results: Thirty-two studies on various types of chronic pain were included. The intervention was well-tolerated. Approximately half of the studies used a protocol that reinforced alpha or sensorimotor rhythms and suppressed theta or beta activity. However, the underlying neurophysiological rationale behind these specific frequency bands remains unclear. Conclusions: There are indications that neurofeedback in patients with chronic pain probably has short-term analgesic effects; however, the long-term effects are less clear. In order to draw more stable conclusions on the effectiveness of neurofeedback in chronic pain, additional research on the neurophysiological mechanisms of targeted frequency bands is definitely worthwhile. Several recommendations for setting up and evaluating the effect of neurofeedback protocols are suggested.
Collapse
Affiliation(s)
- Britt B. Schuurman
- Department of Psychiatry & Neuro-Psychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Richel L. Lousberg
- Department of Psychiatry & Neuro-Psychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jan U. Schreiber
- Department of Anaesthesiology and Pain Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Therese A. M. J. van Amelsvoort
- Department of Psychiatry & Neuro-Psychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Catherine J. Vossen
- Department of Anaesthesiology and Pain Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Anaesthesiology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
2
|
Moore PT. Infra-low frequency neurofeedback and insomnia as a model of CNS dysregulation. Front Hum Neurosci 2022; 16:959491. [PMID: 36211128 PMCID: PMC9534730 DOI: 10.3389/fnhum.2022.959491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
This paper will review what is conventionally known of sleep homeostasis and focus on insomnia as a primary manifestation of brain dysregulation, whether as a solitary symptom or as part of a larger syndrome such as post-traumatic stress disorder, PTSD. It will discuss in brief behavioral/mindfulness treatments that have been used to treat neurologic diseases, as this is germane to the phenomenology of neurofeedback (NF). It will explore how neurofeedback may work at the subconscious level and cover the current clinical experience of the effectiveness of this technique in the treatment of insomnia. It will conclude with a case presentation.
Collapse
|
3
|
Annaheim C, Hug K, Stumm C, Messerli M, Simon Y, Hund-Georgiadis M. Neurofeedback in patients with frontal brain lesions: A randomized, controlled double-blind trial. Front Hum Neurosci 2022; 16:979723. [PMID: 36188178 PMCID: PMC9521487 DOI: 10.3389/fnhum.2022.979723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Frontal brain dysfunction is a major challenge in neurorehabilitation. Neurofeedback (NF), as an EEG-based brain training method, is currently applied in a wide spectrum of mental health conditions, including traumatic brain injury. Objective This study aimed to explore the capacity of Infra-Low Frequency Neurofeedback (ILF-NF) to promote the recovery of brain function in patients with frontal brain injury. Materials and methods Twenty patients hospitalized at a neurorehabilitation clinic in Switzerland with recently acquired, frontal and optionally other brain lesions were randomized to either receive NF or sham-NF. Cognitive improvement was assessed using the Frontal Assessment Battery (FAB) and the Test of Attentional Performance (TAP) tasks regarding intrinsic alertness, phasic alertness and impulse control. Results With respect to cognitive improvements, there was no significant difference between the two groups after 20 sessions of either NF or sham-NF. However, in a subgroup of patients with predominantly frontal brain lesions, the improvements measured by the FAB and intrinsic alertness were significantly higher in the NF-group. Conclusion This is the first double-blind controlled study using NF in recovery from brain injury, and thus also the first such study of ILF NF. Although the result of the subgroup has limited significance because of the small number of participants, it accentuates the trend seen in the whole group regarding the FAB and intrinsic alertness (p = 0.068, p = 0.079, respectively). We therefore conclude that NF could be a promising candidate promoting the recoveryfrom frontal brain lesions. Further studies with larger numbers of patients and less lesion heterogeneity are needed to verify the usefulness of NF in the neurorehabilitation of patients with frontal brain injury (NCT02957695 ClinicalTrials.gov).
Collapse
Affiliation(s)
- Christine Annaheim
- REHAB Basel, Klinik für Neurorehabilitation und Paraplegiologie, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
4
|
Kropotov JD. The enigma of infra-slow fluctuations in the human EEG. Front Hum Neurosci 2022; 16:928410. [PMID: 35982689 PMCID: PMC9378968 DOI: 10.3389/fnhum.2022.928410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous Infra-Slow Fluctuations (ISFs) of the human EEG (EEG-ISFs) were discovered 60 years ago when appropriate amplifiers for their recordings were designed. To avoid skin-related artifacts the recording of EEG-ISFs required puncturing the skin under the electrode. In the beginning of the 21st century the interest in EEG-ISFs was renewed with the appearance of commercially available DC-coupled amplified and by observation of ISFs of the blood oxygen level–dependent (BOLD) functional magnetic resonance imaging signal at a similar frequency. The independent components of irregular EEG-ISFs were shown to correlate with BOLD signals which in turn were driven by changes in arousal level measured by galvanic skin response (GSR), pupil size and HRV. There is no consensus regarding the temporal organization of EEG-ISFs: some studies emphasize the absence of peaks on EEG-ISFs spectra, some studies report prominent oscillations with frequency around 0.1 or 0.02 Hz, while some emphasize multiple discrete infraslow oscillations. No studies used parameters of EEG-ISFs as neuromarkers to discriminate psychiatric patients from healthy controls. Finally, a set of working hypotheses is suggested that must be tested in future research to solve the enigma of EEG-ISFs.
Collapse
|
5
|
Bazzana F, Finzi S, Di Fini G, Veglia F. Infra-Low Frequency Neurofeedback: A Systematic Mixed Studies Review. Front Hum Neurosci 2022; 16:920659. [PMID: 35903788 PMCID: PMC9314572 DOI: 10.3389/fnhum.2022.920659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Neurofeedback training is increasingly applied as a therapeutic tool in a variety of disorders, with growing scientific and clinical interest in the last two decades. Different Neurofeedback approaches have been developed over time, so it is now important to be able to distinguish between them and investigate the effectiveness and efficiency characteristics of each specific protocol. In this study we intend to examine the effects of Neurofeedback based on slow brain activity, the so-called Infra-Low Frequency (ILF) training a recently developed methodology that seems promising for the regulation of the central nervous system. Aims With this review we intend to summarize the currently existing literature on ILF-Neurofeedback, examine its quality and formulate indications about the clinical effectiveness of ILF-Neurofeedback. Methods Literature search was first conducted according to PRISMA principles, described, and then assessed using the MMAT appraisal tool. 18 well-documented studies of ILF-Neurofeedback training in human subjects were picked up and analyzed. Reports include group interventions as well as single case studies. Results Research data indicates good potential for ILF-Neurofeedback to influence brain activity and neurovegetative parameters. From the clinical profile, a salient common observation is a high level of individualization as a specific characteristic of ILF-Training: this feature seems to correlate with effectiveness of ILF-Neurofeedback, but also poses a challenge for researchers in terms of producing controlled and comparable findings; according to this point, some recommendation for future research on ILF-Neurofeedback are proposed. In conclusion, ILF-neurofeedback shows great potential for application for all those conditions in which the regulation of brain activity and neurophysiological processes are crucial. Further research will make it possible to complete the available data and to have a broader overview of its possible applications.
Collapse
|
6
|
Legarda SB, Michas-Martin PA, McDermott D. Managing Intractable Symptoms of Parkinson's Disease: A Nonsurgical Approach Employing Infralow Frequency Neuromodulation. Front Hum Neurosci 2022; 16:894781. [PMID: 35880105 PMCID: PMC9308006 DOI: 10.3389/fnhum.2022.894781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
|
7
|
Dobrushina OR, Dobrynina LA, Arina GA, Kremneva EI, Novikova ES, Gubanova MV, Pechenkova EV, Suslina AD, Aristova VV, Trubitsyna VV, Krotenkova MV. Enhancing Brain Connectivity With Infra-Low Frequency Neurofeedback During Aging: A Pilot Study. Front Hum Neurosci 2022; 16:891547. [PMID: 35712529 PMCID: PMC9195620 DOI: 10.3389/fnhum.2022.891547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with decreased functional connectivity in the main brain networks, which can underlie changes in cognitive and emotional processing. Neurofeedback is a promising non-pharmacological approach for the enhancement of brain connectivity. Previously, we showed that a single session of infra-low frequency neurofeedback results in increased connectivity between sensory processing networks in healthy young adults. In the current pilot study, we aimed to evaluate the possibility of enhancing brain connectivity during aging with the use of infra-low frequency neurofeedback. Nine females aged 52 ± 7 years with subclinical signs of emotional dysregulation, including anxiety, mild depression, and somatoform symptoms, underwent 15 sessions of training. A resting-state functional MRI scan was acquired before and after the training. A hypothesis-free intrinsic connectivity analysis showed increased connectivity in regions in the bilateral temporal fusiform cortex, right supplementary motor area, left amygdala, left temporal pole, and cerebellum. Next, a seed-to-voxel analysis for the revealed regions was performed using the post- vs. pre-neurofeedback contrast. Finally, to explore the whole network of neurofeedback-related connectivity changes, the regions revealed by the intrinsic connectivity and seed-to-voxel analyses were entered into a network-based statistical analysis. An extended network was revealed, including the temporal and occipital fusiform cortex, multiple areas from the visual cortex, the right posterior superior temporal sulcus, the amygdala, the temporal poles, the superior parietal lobule, and the supplementary motor cortex. Clinically, decreases in alexithymia, depression, and anxiety levels were observed. Thus, infra-low frequency neurofeedback appears to be a promising method for enhancing brain connectivity during aging, and subsequent sham-controlled studies utilizing larger samples are feasible.
Collapse
Affiliation(s)
- Olga R. Dobrushina
- Third Neurological Department, Research Center of Neurology, Moscow, Russia
- *Correspondence: Olga R. Dobrushina
| | | | - Galina A. Arina
- Faculty of Psychology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena I. Kremneva
- Department of Radiology, Research Center of Neurology, Moscow, Russia
| | | | - Mariia V. Gubanova
- Third Neurological Department, Research Center of Neurology, Moscow, Russia
| | | | | | - Vlada V. Aristova
- Third Neurological Department, Research Center of Neurology, Moscow, Russia
- Faculty of Psychology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
8
|
Arina GA, Dobrushina OR, Shvetsova ET, Osina ED, Meshkov GA, Aziatskaya GA, Trofimova AK, Efremova IN, Martunov SE, Nikolaeva VV. Infra-Low Frequency Neurofeedback in Tension-Type Headache: A Cross-Over Sham-Controlled Study. Front Hum Neurosci 2022; 16:891323. [PMID: 35669204 PMCID: PMC9164298 DOI: 10.3389/fnhum.2022.891323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Primary headaches are highly prevalent and represent a major cause of disability in young adults. Neurofeedback is increasingly used in the treatment of chronic pain; however, there are few studies investigating its efficacy in patients with headaches. We report the results of a cross-over sham-controlled study on the efficacy of neurofeedback in the prophylactic treatment of tension-type headache (TTH). Participants received ten sessions of infra-low frequency electroencephalographic neurofeedback and ten sessions of sham-neurofeedback, with the order of treatments being randomized. The study also included a basic psychotherapeutic intervention — a psychoeducational session performed before the main study phases and emotional support provided throughout the study period. The headache probability was modeled as a function of the neurofeedback and sham-neurofeedback sessions performed to date. As a result, we revealed a strong beneficial effect of neurofeedback and no influence of the sham sessions. The study supports the prophylactic use of infra-low frequency neurofeedback in patients with TTH. From a methodological point of view, we advocate for the explicit inclusion of psychotherapeutic components in neurofeedback study protocols.
Collapse
Affiliation(s)
- Galina A. Arina
- Faculty of Psychology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga R. Dobrushina
- International Institute of Psychosomatic Health, Moscow, Russia
- Research Center of Neurology, Moscow, Russia
- *Correspondence: Olga R. Dobrushina,
| | | | - Ekaterina D. Osina
- Faculty of Psychology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexandra K. Trofimova
- Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | | | | | | |
Collapse
|
9
|
A. Markovics J. Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism of Action for All Methods of Neurofeedback. ARTIF INTELL 2022. [DOI: 10.5772/intechopen.98343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are several different methods of neurofeedback, most of which presume an operant conditioning model whereby the subject learns to control their brain activity in particular regions of the brain and/or at particular brainwave frequencies based on reinforcement. One method, however, called infra-low frequency [ILF] neurofeedback cannot be explained through this paradigm, yet it has profound effects on brain function. Like a conductor of a symphony, recent evidence demonstrates that the primary ILF (typically between 0.01–0.1 Hz), which correlates with the fluctuation of oxygenated and deoxygenated blood in the brain, regulates all of the classic brainwave bands (i.e. alpha, theta, delta, beta, gamma). The success of ILF neurofeedback suggests that all forms of neurofeedback may work through a similar mechanism that does not fit the operant conditioning paradigm. This chapter focuses on the possible mechanisms of action for ILF neurofeedback, which may be generalized, based on current evidence.
Collapse
|
10
|
Saul MA, He X, Black S, Charles F. A Two-Person Neuroscience Approach for Social Anxiety: A Paradigm With Interbrain Synchrony and Neurofeedback. Front Psychol 2022; 12:568921. [PMID: 35095625 PMCID: PMC8796854 DOI: 10.3389/fpsyg.2021.568921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Social anxiety disorder has been widely recognised as one of the most commonly diagnosed mental disorders. Individuals with social anxiety disorder experience difficulties during social interactions that are essential in the regular functioning of daily routines; perpetually motivating research into the aetiology, maintenance and treatment methods. Traditionally, social and clinical neuroscience studies incorporated protocols testing one participant at a time. However, it has been recently suggested that such protocols are unable to directly assess social interaction performance, which can be revealed by testing multiple individuals simultaneously. The principle of two-person neuroscience highlights the interpersonal aspect of social interactions that observes behaviour and brain activity from both (or all) constituents of the interaction, rather than analysing on an individual level or an individual observation of a social situation. Therefore, two-person neuroscience could be a promising direction for assessment and intervention of the social anxiety disorder. In this paper, we propose a novel paradigm which integrates two-person neuroscience in a neurofeedback protocol. Neurofeedback and interbrain synchrony, a branch of two-person neuroscience, are discussed in their own capacities for their relationship with social anxiety disorder and relevance to the paradigm. The newly proposed paradigm sets out to assess the social interaction performance using interbrain synchrony between interacting individuals, and to employ a multi-user neurofeedback protocol for intervention of the social anxiety.
Collapse
Affiliation(s)
- Marcia A. Saul
- Faculty of Media and Communication, Centre for Digital Entertainment, Bournemouth University, Poole, United Kingdom
| | - Xun He
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- *Correspondence: Xun He
| | - Stuart Black
- Applied Neuroscience Solutions Ltd., Frimley Green, United Kingdom
| | - Fred Charles
- Department of Creative Technology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- Fred Charles
| |
Collapse
|
11
|
The Current Evidence Levels for Biofeedback and Neurofeedback Interventions in Treating Depression: A Narrative Review. Neural Plast 2021; 2021:8878857. [PMID: 33613671 PMCID: PMC7878101 DOI: 10.1155/2021/8878857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
This article is aimed at showing the current level of evidence for the usage of biofeedback and neurofeedback to treat depression along with a detailed review of the studies in the field and a discussion of rationale for utilizing each protocol. La Vaque et al. criteria endorsed by the Association for Applied Psychophysiology and Biofeedback and International Society for Neuroregulation & Research were accepted as a means of study evaluation. Heart rate variability (HRV) biofeedback was found to be moderately supportable as a treatment of MDD while outcome measure was a subjective questionnaire like Beck Depression Inventory (level 3/5, “probably efficacious”). Electroencephalographic (EEG) neurofeedback protocols, namely, alpha-theta, alpha, and sensorimotor rhythm upregulation, all qualify for level 2/5, “possibly efficacious.” Frontal alpha asymmetry protocol also received limited evidence of effect in depression (level 2/5, “possibly efficacious”). Finally, the two most influential real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocols targeting the amygdala and the frontal cortices both demonstrate some effectiveness, though lack replications (level 2/5, “possibly efficacious”). Thus, neurofeedback specifically targeting depression is moderately supported by existing studies (all fit level 2/5, “possibly efficacious”). The greatest complication preventing certain protocols from reaching higher evidence levels is a relatively high number of uncontrolled studies and an absence of accurate replications arising from the heterogeneity in protocol details, course lengths, measures of improvement, control conditions, and sample characteristics.
Collapse
|
12
|
Zhang J, Safar K, Emami Z, Ibrahim GM, Scratch SE, da Costa L, Dunkley BT. Local and large-scale beta oscillatory dysfunction in males with mild traumatic brain injury. J Neurophysiol 2020; 124:1948-1958. [PMID: 33052746 DOI: 10.1152/jn.00333.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is impossible to detect with standard neuroradiological assessment such as structural magnetic resonance imaging (MRI). Injury does, however, disrupt the dynamic repertoire of neural activity indexed by neural oscillations. In particular, beta oscillations are reliable predictors of cognitive, perceptual, and motor system functioning, as well as correlating highly with underlying myelin architecture and brain connectivity-all factors particularly susceptible to dysregulation after mTBI. We measured local and large-scale neural circuit function by magnetoencephalography (MEG) with a data-driven model fit approach using the fitting oscillations and one-over f algorithm in a group of young adult men with mTBI and a matched healthy control group. We quantified band-limited regional power and functional connectivity between brain regions. We found reduced regional power and deficits in functional connectivity across brain areas, which pointed to the well-characterized thalamocortical dysconnectivity associated with mTBI. Furthermore, our results suggested that beta functional connectivity data reached the best mTBI classification performance compared with regional power and symptom severity [measured with Sport Concussion Assessment Tool 2 (SCAT2)]. The present study reveals the relevance of beta oscillations as a window into neurophysiological dysfunction in mTBI and also highlights the reliability of neural synchrony biomarkers in disorder classification.NEW & NOTEWORTHY Mild traumatic brain injury (mTBI) disrupts the dynamic repertoire of neural oscillations, but so far beta activity has not been studied. In mTBI, we found reductions in frontal beta and large-scale beta networks, indicative of thalamocortical dysconnectivity and disrupted information flow through cortico-basal ganglia-thalamic circuits. Relatively, connectivity more accurately classifies individual mTBI cases compared with regional power. We show the relevance of beta oscillations in mTBI and the reliability of these markers in classification.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto Ontario, Canada
| | - Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto Ontario, Canada
| | - Zahra Emami
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto Ontario, Canada
| | - George M Ibrahim
- Neurosciences & Mental Health, SickKids Research Institute, Toronto Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shannon E Scratch
- Bloorview Research Institute, Toronto, Ontario, Canada.,Holland Bloorview Rehabilitation Hospital, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Leodante da Costa
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Dobrushina OR, Vlasova RM, Rumshiskaya AD, Litvinova LD, Mershina EA, Sinitsyn VE, Pechenkova EV. Modulation of Intrinsic Brain Connectivity by Implicit Electroencephalographic Neurofeedback. Front Hum Neurosci 2020; 14:192. [PMID: 32655386 PMCID: PMC7324903 DOI: 10.3389/fnhum.2020.00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the increasing popularity of neurofeedback, its mechanisms of action are still poorly understood. This study aims to describe the processes underlying implicit electroencephalographic neurofeedback. Fifty-two healthy volunteers were randomly assigned to a single session of infra-low frequency neurofeedback or sham neurofeedback, with electrodes over the right middle temporal gyrus and the right inferior parietal lobule. They observed a moving rocket, the speed of which was modulated by the waveform derived from a band-limited infra-low frequency filter. Immediately before and after the session, the participants underwent a resting-state fMRI. Network-based statistical analysis was applied, comparing post- vs. pre-session and real vs. sham neurofeedback conditions. As a result, two phenomena were observed. First, we described a brain circuit related to the implicit neurofeedback process itself, consisting of the lateral occipital cortex, right dorsolateral prefrontal cortex, left orbitofrontal cortex, right ventral striatum, and bilateral dorsal striatum. Second, we found increased connectivity between key regions of the salience, language, and visual networks, which is indicative of integration in sensory processing. Thus, it appears that a single session of implicit infra-low frequency electroencephalographic neurofeedback leads to significant changes in intrinsic brain connectivity.
Collapse
Affiliation(s)
- Olga R Dobrushina
- Third Neurological Department, Research Center of Neurology, Moscow, Russia.,International Institute of Psychosomatic Health, Moscow, Russia
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | | | - Liudmila D Litvinova
- Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Elena A Mershina
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Valentin E Sinitsyn
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Pechenkova
- Laboratory for Cognitive Research, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
14
|
Steingrimsson S, Bilonic G, Ekelund AC, Larson T, Stadig I, Svensson M, Vukovic IS, Wartenberg C, Wrede O, Bernhardsson S. Electroencephalography-based neurofeedback as treatment for post-traumatic stress disorder: A systematic review and meta-analysis. Eur Psychiatry 2020; 63:e7. [PMID: 32093790 PMCID: PMC8057448 DOI: 10.1192/j.eurpsy.2019.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background. Post-traumatic stress disorder (PTSD) is debilitating for patients and society. There are a number of treatment methods albeit not all patients respond to these and an interesting method using electroencephalography-based neurofeedback (EEG-NF) has become more prominent in recent years. This systematic review aimed to assess whether EEG-NF, compared with sham NF, other treatment, or no treatment, is effective for PTSD. Primary outcomes were self-harm, PTSD symptoms, level of functioning and health-related quality of life. Methods. Systematic literature searches for randomized controlled trials (RCTs) were conducted in six databases. Random effects meta-analysis was performed. Certainty of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation. Results. Four RCTs were included (123 participants). Suicidal thoughts were significantly reduced after EEG-NF compared with a waiting list in a small study. PTSD symptoms were assessed in all studies with different instruments. Results were consistently in favor of EEG-NF with large effect sizes (standardized mean difference −2.30 (95% confidence interval: −4.37 to −0.24). One study reported significantly improved level of executive functioning and one study a reduction in use of psychotropic medication. Complications were scarcely reported. Certainty of evidence was assessed as very low for the four assessed outcomes. Conclusions. Based on four RCTs, with several study limitations and imprecision, it is uncertain whether EEG-NF reduces suicidal thoughts, PTSD symptoms, medication use, or improves function. Although all studies showed promising results, further studies are needed to increase the certainty of evidence.
Collapse
Affiliation(s)
- Steinn Steingrimsson
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden.,University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Gorana Bilonic
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann-Catrin Ekelund
- Region Västra Götaland, Medical Library, Skaraborg Hospital, Lidköping, Sweden
| | - Tomas Larson
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden.,University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Ida Stadig
- Region Västra Götaland, Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Iris Sarajlic Vukovic
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Olof Wrede
- Region Västra Götaland, Crisis and Trauma Unit, Gothenburg, Sweden
| | - Susanne Bernhardsson
- University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, Gothenburg, Sweden.,Region Västra Götaland, HTA-Centrum, Gothenburg, Sweden.,Research and Development Primary Health Care, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
A method of nonprescriptive neurofeedback is described that is based on the brain interacting with its own tonic slow cortical potential. In the absence of any explicit guidance by the clinician, the training depends entirely on the brain's response to the unfolding signal. When this training is performed under optimal conditions in terms of placement and target frequency, there is a bias toward optimal functioning. The brain uses the information for its own benefit. The outcomes of the training are either comparable to or exceed expectations based on conventional electroencelphalogram band-based neurofeedback. Results are shown for a cognitive skills test for an unselected clinical population.
Collapse
|
16
|
Neurofeedback Treatment and Posttraumatic Stress Disorder: Effectiveness of Neurofeedback on Posttraumatic Stress Disorder and the Optimal Choice of Protocol. J Nerv Ment Dis 2016; 204:69-77. [PMID: 26825263 DOI: 10.1097/nmd.0000000000000418] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurofeedback is an alternative, noninvasive approach used in the treatment of a wide range of neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). Many different neurofeedback protocols and methods exist. Likewise, PTSD is a heterogeneous disorder. To review the evidence on effectiveness and preferred protocol when using neurofeedback treatment on PTSD, a systematic search of PubMed, PsychInfo, Embase, and Cochrane databases was undertaken. Five studies were included in this review. Neurofeedback had a statistically significant effect in three studies. Neurobiological changes were reported in three studies. Interpretation of results is, however, limited by differences between the studies and several issues regarding design. The optimistic results presented here qualify neurofeedback as probably efficacious for PTSD treatment.
Collapse
|
17
|
Benioudakis ES, Kountzaki S, Batzou K, Markogiannaki K, Seliniotaki T, Darakis E, Saridaki M, Vergoti A, Nestoros JN. Can Neurofeedback Decrease Anxiety and Fear in Cancer Patients? A Case Study. POSTĘPY PSYCHIATRII I NEUROLOGII 2016. [DOI: 10.1016/j.pin.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|