1
|
Knowles JK, Warren AEL, Mohamed IS, Stafstrom CE, Koh HY, Samanta D, Shellhaas RA, Gupta G, Dixon‐Salazar T, Tran L, Bhatia S, McCabe JM, Patel AD, Grinspan ZM. Clinical trials for Lennox-Gastaut syndrome: Challenges and priorities. Ann Clin Transl Neurol 2024; 11:2818-2835. [PMID: 39440617 PMCID: PMC11572735 DOI: 10.1002/acn3.52211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset epilepsy that is typically refractory to treatment. We surveyed the current landscape of LGS treatment, aiming to identify challenges to the development of efficacious therapies, and to articulate corresponding priorities toward clinical trials that improve outcomes. METHODS The LGS Special Interest Group of the Pediatric Epilepsy Research Consortium integrated evidence from the literature and expert opinion, into a narrative review. RESULTS We provide an overview of approved and emerging medical, dietary, surgical and neuromodulation approaches for LGS. We note that quality of care could be improved by standardizing LGS treatment based on expert consensus and empirical data. Whereas LGS natural history is incompletely understood, prospective studies and use of large retrospective datasets to understand LGS across the lifespan would enable clinical trials that address these dynamics. Recent discoveries related to LGS pathophysiology should enable development of disease-modifying therapies, which are currently lacking. Finally, clinical trials have focused chiefly on seizures involving "drops," but should incorporate additional patient-centered outcomes, using emerging measures adapted to people with LGS. INTERPRETATION Clinicians and researchers should enact these priorities, with the goal of patient-centered clinical trials that are tailored to LGS pathophysiology and natural history.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Department of NeurologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Aaron E. L. Warren
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Carl E. Stafstrom
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Debopam Samanta
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Renée A. Shellhaas
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Gita Gupta
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | | | - Linh Tran
- Jane and John Justin Institute for Mind HealthCook Children's Medical CenterFort WorthTexasUSA
| | - Sonal Bhatia
- Division of Pediatric NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Anup D. Patel
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- The Center for Clinical ExcellenceNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
2
|
Brown R, Rabeling A, Goolam M. Progress and potential of brain organoids in epilepsy research. Stem Cell Res Ther 2024; 15:361. [PMID: 39396038 PMCID: PMC11470583 DOI: 10.1186/s13287-024-03944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Epilepsies are disorders of the brain characterised by an imbalance in electrical activity, linked to a disruption in the excitation and inhibition of neurons. Progress in the epilepsy research field has been hindered by the lack of an appropriate model, with traditionally used 2D primary cell culture assays and animal models having a number of limitations which inhibit their ability to recapitulate the developing brain and the mechanisms behind epileptogenesis. As a result, the mechanisms behind the pathogenesis of epilepsy are largely unknown. Brain organoids are 3D aggregates of neural tissue formed in vitro and have been shown to recapitulate the gene expression patterns of the brain during development, and can successfully model a range of epilepsies and drug responses. They thus present themselves as a novel tool to advance studies into epileptogenesis. In this review, we discuss the formation of brain organoids, their recent application in studying genetic epilepsies, hyperexcitability dynamics and oxygen glucose deprivation as a hyperexcitability agent, their use as an epilepsy drug testing and development platform, as well as the limitations of their use in epilepsy research and how these can be mitigated.
Collapse
Affiliation(s)
- Rachel Brown
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
3
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
4
|
Chern CR, Lauková M, Schonwald A, Kudová E, Chodounská H, Chern CJ, Shakarjian MP, Velíšková J, Velíšek L. Novel neurosteroid pregnanolone pyroglutamate suppresses neurotoxicity syndrome induced by tetramethylenedisulfotetramine but is ineffective in a rodent model of infantile spasms. Pharmacol Rep 2023; 75:177-188. [PMID: 36422805 PMCID: PMC10785007 DOI: 10.1007/s43440-022-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neurosteroids are investigated as effective antidotes for the poisoning induced by tetramethylenedisulfotetramine (TMDT) as well as treatments for epileptic spasms during infancy. Both these conditions are quite resistant to pharmacotherapy; thus, a search for new treatments is warranted. METHODS In this study, we determined the efficacy of two novel neurosteroids, pregnanolone glutamate (PAG) and pregnanolone pyroglutamate (PPG), and tested these drugs in doses of 1-10 mg/kg (ip) against the TMDT syndrome and in our rodent model of infantile spasms. RESULTS Only PPG in doses 5 and 10 mg/kg suppressed the severity of the TMDT syndrome and TMDT-induced lethality, while the 1 mg/kg dose was without an effect. Interestingly, the 1 mg/kg dose of PPG in combination with 1 mg/kg of diazepam was also effective against TMDT poisoning. Neither PAG nor PPG were effective against experimental spasms in the N-methyl-D-aspartate (NMDA)-triggered model of infantile spasms. CONCLUSIONS While evidence suggests that PAG can act through multiple actions which include allosteric inhibition of NMDA-induced and glycine receptor-evoked currents as well as augmentation of ɣ-aminobutyric acid subtype A (GABAA) receptor-induced currents, the agent appears to neither have the appropriate mechanistic signature for activity in the infantile spasm model, nor the adequate potency, relative to PPG, for ameliorating the TMDT syndrome. The full mechanisms of action of PPG, which may become a potent TMDT antidote either alone or in combination with diazepam are yet unknown and thus require further investigation.
Collapse
Affiliation(s)
- Chian-Ru Chern
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Marcela Lauková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Science, Bratislava, Slovakia
| | - Antonia Schonwald
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Chodounská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Chian-Jiang Chern
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Michael P Shakarjian
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Public Health, Environmental Health Science Program, New York Medical College, Valhalla, NY, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Ln W, Piscataway, NJ, 08854, USA
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
- Department of Neurology, New York Medical College, Valhalla, NY, USA.
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
5
|
Cerebroprotective actions of hydrogen sulfide in the epileptic brain in newborn pigs. Pediatr Res 2023:10.1038/s41390-023-02486-5. [PMID: 36694027 PMCID: PMC10363572 DOI: 10.1038/s41390-023-02486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neonatal epileptic seizures cause postictal dysregulation of cerebral blood flow. Hydrogen sulfide (H2S), a mediator with vasodilator and antioxidant properties, is produced in the brain by astrocyte cystathionine β-synthase (CBS). This study investigated whether H2S improves the cerebral vascular outcome of seizures. METHODS Epileptic seizures were induced in newborn pigs using bicuculline. The effects of the CBS inhibitor aminooxyacetate (AOA) and the H2S donor NaHS on cerebral vascular outcome of seizures were examined in live pigs, cerebral endothelial cells, and cortical astrocytes. RESULTS Brain H2S was elevated during seizures. AOA blocked H2S and reduced functional hyperemia in the epileptic brain. The endothelium- and astrocyte-dependent vasodilation of pial arterioles was impaired 48 h after seizures suggesting cerebral vascular dysfunction. Systemic NaHS elevated brain H2S and blocked reactive oxygen species in the epileptic brain and in primary endothelial cells and astrocytes during inflammatory and excitotoxic conditions. Postictal cerebrovascular dysfunction was exaggerated in H2S-inhibited pigs and minimized in NaHS-treated pigs. CONCLUSIONS H2S elevation in the epileptic brain via activation of CBS contributes to functional hyperemia and exhibits cerebroprotective properties. The H2S donor NaHS enhances brain antioxidant defense and provides a therapeutic approach for preventing adverse cerebral vascular outcome of neonatal epileptic seizures. IMPACT Epileptic seizures in neonates lead to prolonged postictal cerebral vascular dysregulation. The role of hydrogen sulfide (H2S), a mediator with vasodilator and antioxidant properties, in the epileptic brain has been explored. Astrocytes are major sites of enzymatic H2S production in the epileptic brain. Postictal cerebral vascular dysfunction is exaggerated when astrocyte H2S production is pharmacologically inhibited during seizures. Postictal cerebral vascular dysfunction is minimized when the brain H2S is elevated by systemic administration of NaHS during seizures. NaHS provides a therapeutic approach for improving cerebrovascular outcome of epileptic seizures via a mechanism that involves the antioxidant potential of H2S.
Collapse
|
6
|
Differential diagnosis between autism spectrum disorder and other developmental disorders with emphasis on the preschool period. World J Pediatr 2022:10.1007/s12519-022-00629-y. [PMID: 36282408 DOI: 10.1007/s12519-022-00629-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Neurodevelopmental disorders are a heterogeneous group of conditions that manifest as delays or deviations in the acquisition of expected developmental milestones and behavioral changes. Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication and social interaction and by repetitive and restricted patterns of behavior, interests and activities. The aim of this review is to discuss the clinical features of the differential diagnoses of ASD that are prevalent among preschoolers, focusing on their similarities and disparities. DATA SOURCES The international medical literature search was conducted using PubMed and was revised regarding the subject using single and/or combined keywords as follows: differential diagnosis, preschoolers, diagnostic challenge, attention deficit hyperactivity disorder, intellectual disability, high abilities/giftedness, childhood apraxia of speech, social communication disorder, Landau-Kleffner syndrome, stereotyped movement disorder and excessive screen time. RESULTS We describe conditions commonly found in clinical practice, taking ASD as a reference. We addressed converging and divergent aspects of behavior, cognition, communication, language, speech, socialization, and stereotypes for the diagnosis of ASD and other disorders identified as potential differential or comorbid diagnoses. CONCLUSIONS The ranking and characterization of symptoms appear to be essential for better understanding the underlying common ground between children with developmental disorders and children with ASD, thus properly diagnosing and directing social, professional, or medication interventions. This detailed discussion adds to the literature since, although ASD differential diagnoses are frequently mentioned and discussed in textbooks and journal articles, they rarely occupy a prominent place as we aimed herein.
Collapse
|
7
|
Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, Banne E, Mahajnah M, Hanna JH, Stern S, Carlen PL, Aqeilan RI. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med 2021; 13:e13610. [PMID: 34268881 PMCID: PMC8350905 DOI: 10.15252/emmm.202013610] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain-containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia-12 (SCAR12) and a more severe early infantile WWOX-related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR-engineered human ES cells and from patient-derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Daniel J Steinberg
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Srinivasarao Repudi
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Afifa Saleem
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
| | | | - Sergey Viukov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Baraa Abudiab
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Ehud Banne
- Genetics InstituteKaplan Medical CenterHebrew University‐Hadassah Medical SchoolRehovotIsrael
- The Rina Mor Genetic InstituteWolfson Medical CenterHolonIsrael
| | - Muhammad Mahajnah
- Paediatric Neurology and Child Developmental CenterHillel Yaffe Medical CenterHaderaIsrael
- Rappaport Faculty of MedicineThe TechnionHaifaIsrael
| | - Jacob H Hanna
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Peter L Carlen
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
- Departments of Medicine and PhysiologyUniversity of TorontoTorontoONCanada
| | - Rami I Aqeilan
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
8
|
Kats DJ, Roche KJ, Skotko BG. Epileptic spasms in individuals with Down syndrome: A review of the current literature. Epilepsia Open 2020; 5:344-353. [PMID: 32913943 PMCID: PMC7469826 DOI: 10.1002/epi4.12412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy can occur in individuals with Down syndrome (DS), with epileptic spasms representing the most frequent seizure type in this population. Epileptic spasms can have devastating consequences on the development of individuals with the condition. This review sought to explore the lifetime prevalence and underlying mechanism of epileptic spasms in this population. We also aimed to review the response rate to various treatments, the relapse rate, and the development of subsequent epilepsy or autism in this population. A comprehensive literature search was conducted for articles discussing the lifetime prevalence, diagnosis, treatment, outcomes, or underlying etiology of epileptic spasms in animal models or individuals with DS. According to available literature, the global clinic-based lifetime prevalence of epilepsy in individuals with DS ranged from 1.6% to 23.1%, with epileptic spasms representing 6.7%-66.7% of these cases. Response rate to treatment with adrenocorticotropic hormone/corticosteroids was highest (81%) and has the most literature supporting its use, with other regimens, including vigabatrin and other antiepileptic drugs, having lower response rates. Epileptic spasms occur more frequently in children with DS than in the general population, though more studies are needed to determine the true lifetime prevalence of epileptic spasms in this population. Generally, children with DS and epileptic spasms tend to be more responsive to treatment and have better outcomes than children with epileptic spasms of unknown etiology (ie, without DS), in terms of response and relapse rates as well as the development of intractable epilepsy (eg, Lennox-Gastaut syndrome).
Collapse
Affiliation(s)
- Daniel J. Kats
- Case Western Reserve University School of MedicineClevelandOHUSA
- Down Syndrome ProgramDivision of Medical Genetics and MetabolismDepartment of PediatricsMassachusetts General HospitalBostonMAUSA
| | - Katherine J. Roche
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
- Harvard‐MIT Division of Health Sciences and TechnologyCambridgeMAUSA
| | - Brian G. Skotko
- Down Syndrome ProgramDivision of Medical Genetics and MetabolismDepartment of PediatricsMassachusetts General HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
9
|
Li S, Zhong X, Hong S, Li T, Jiang L. Prednisolone/prednisone as adrenocorticotropic hormone alternative for infantile spasms: a meta-analysis of randomized controlled trials. Dev Med Child Neurol 2020; 62:575-580. [PMID: 31903560 DOI: 10.1111/dmcn.14452] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
AIM To compare the efficacy and safety of prednisolone/prednisone and adrenocorticotropic hormone (ACTH) in the treatment of infantile spasms using a meta-analysis of randomized controlled trials (RCTs). METHOD In a systematic literature search of electronic databases (MEDLINE, Embase, the Cochrane Library), we identified RCTs that assessed prednisolone/prednisone compared with ACTH/tetracosactide in patients with infantile spasms. The electroclinical response and adverse events were evaluated. RESULTS Six RCTs (616 participants) were included in the meta-analysis. Compared with prednisolone/prednisone, ACTH/tetracosactide was not superior in terms of cessation of spasms at day 14 (relative risk 1.19, 95% confidence interval [CI] 0.74-1.92), day 42 (relative risk 1.02, 95% CI 0.63-1.65), and resolution of hypsarrhythmia on electroencephalogram (relative risk 1.14, 95% CI 0.71-1.81); the incidences of common adverse reactions caused by ACTH/tetracosactide were not lower than that of prednisolone/prednisone for irritability (relative risk 0.79, 95% CI 0.57-1.10), increased appetite (relative risk 0.78, 95% CI 0.57-1.08), weight gain (relative risk 0.86, 95% CI 0.56-1.32), and gastrointestinal upset (relative risk 0.60, 95% CI 0.35-1.02), though it seemed less frequent. INTERPRETATION Prednisolone/prednisone elicits a similar electroclinical response as ACTH for infantile spasms, which indicates that it can be an alternative to ACTH for treating infantile spasms. What this paper adds Prednisolone/prednisone is as effective as adrenocorticotropic hormone (ACTH) in electroclinical response of infantile spasms. Prednisolone/prednisone and ACTH cause similar and tolerable adverse effects, whose incidences are comparable. High-dose prednisone/prednisolone might be preferable to low dose for achieving freedom from spasms.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Paediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefei Zhong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Paediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Electroneurophysiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Siqi Hong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Paediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tingsong Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Paediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Paediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Abu Dhais F, McNamara B, O'Mahony O, McSweeney N, Livingstone V, Murray DM, Boylan GB. Impact of therapeutic hypothermia on infantile spasms: an observational cohort study. Dev Med Child Neurol 2020; 62:62-68. [PMID: 31518001 PMCID: PMC6916151 DOI: 10.1111/dmcn.14331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/25/2022]
Abstract
AIM To establish the incidence of infantile spasms in children in the southern region of the Republic of Ireland and to compare the incidence of infantile spasms before and after the introduction of therapeutic hypothermia in infants with hypoxic-ischemic encephalopathy (HIE). METHOD Children born between 2003 and 2015 and diagnosed with infantile spasms (epileptic spasms with or without hypsarrhythmia) in the first 2 years of life were identified through audits of electroencephalography reports and paediatric neurology patient lists. Data on live births were obtained from the regional hospital statistics databases. Medical charts of infantile spasm cases were reviewed for demographic information, diagnostic workup results, treatment response, disease course, and developmental outcome. RESULTS Forty-two infants with infantile spasms were identified. The cumulative incidence of infantile spasms up to the age of 2 years was 4.01 per 10 000 live births. Difference due to sex was minimal (22 males, 20 females) and most infants were delivered at or near term with gestational ages ranging between 30.0 and 41.8 weeks (median [interquartile range] 39.6wks [38.1-40.0wks]). The aetiology for infantile spasms was identified in almost two-thirds of cases, with HIE being the single most common cause (n=7). Other causes included chromosomal and monogenetic abnormalities (n=8). Infantile spasms occurred in moderate and severe grades of HIE, with a significantly higher incidence in those with severe HIE (p=0.029). Infants with severe HIE who did not receive therapeutic hypothermia were six times more likely to develop infantile spasms compared to those who did, but the difference was not statistically significant (4 out of 16 vs 1 out of 24, p=0.138). INTERPRETATION This study provides detailed information about infantile spasms before and after the introduction of therapeutic hypothermia. HIE severity is a risk factor for the development of infantile spasms. The introduction of therapeutic hypothermia may have had an impact, but the effect was hard to ascertain in this cohort due to the small number of infants. WHAT THIS PAPER ADDS The incidence of infantile spasms and patient characteristics in the southern region of the Republic of Ireland is similar to internationally published data. None of the infants with a history of mild hypoxic-ischemic encephalopathy (HIE) developed infantile spasms. The risk of infantile spasms was higher in infants with severe HIE. Infantile spasms were more frequent in infants with severe HIE not treated with therapeutic hypothermia.
Collapse
Affiliation(s)
- Farah Abu Dhais
- INFANT Research Centre, University College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Brian McNamara
- Department of NeurophysiologyCork University HospitalCorkIreland
| | - Olivia O'Mahony
- Department of PaediatricsCork University HospitalCorkIreland
| | - Niamh McSweeney
- Department of PaediatricsCork University HospitalCorkIreland
| | - Vicki Livingstone
- INFANT Research Centre, University College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Deirdre M Murray
- INFANT Research Centre, University College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Geraldine B Boylan
- INFANT Research Centre, University College CorkCorkIreland
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| |
Collapse
|
11
|
Ewen JB, Marvin AR, Law K, Lipkin PH. Epilepsy and Autism Severity: A Study of 6,975 Children. Autism Res 2019; 12:1251-1259. [PMID: 31124277 DOI: 10.1002/aur.2132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Epilepsy is known to occur in a higher-than-expected proportion of individuals with autism spectrum disorders (ASDs). Prior studies of this heterogeneous disorder have suggested that intelligence quotient (IQ) may drive this relationship. Because intellectual disability (ID) is, independently of ASD, a risk factor for epilepsy, current literature calls into question the long-understood unique relationship between ASD and epilepsy. Second, data have been unclear about whether developmental regression in ASD is associated with epilepsy. Using two cohorts from an online research registry, totaling 6,975 children with ASD, we examined the independent role of four ASD severity measures in driving the relationship with epilepsy: ID, language impairment, core ASD symptom severity, and motor dysfunction, controlling for two known relevant factors: age and sex. We also examined whether developmental regression and epilepsy have an independent statistical link. All four ASD severity factors showed independent statistical associations with epilepsy in one cohort, and three in the other. ID showed the largest relative risk (RR) in both cohorts. Effect sizes were modest. Regression similarly showed an independent statistical association with epilepsy, but with small effect size. Similar to previous work, ID showed the greatest contribution to RR for epilepsy among children with ASD. However, other ASD severity markers showed statistical associations, demonstrating that the ASD-epilepsy association is not reducible to the effect of ID. Inconsistencies in the literature may be due to underpowered studies, yet moving forward with larger-n studies, clinical significance and scientific relevance may be dictated by effect size and not merely statistical significance. Autism Res 2019, 12: 1251-1259. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Epilepsy is known to occur more often in individuals with autism spectrum disorders (ASDs) than is the case in the general population. The association between ASD and epilepsy is of interest because studying the two disorders in combination may help advance our understanding of genetic, molecular, and cellular mechanisms-as well as therapies-for both. Recent studies have suggested that intelligence quotient (IQ) alone in individuals with ASD may account for the increased prevalence of epilepsy. However, our approach was to look at a range of severity factors relevant to ASD and to look for correlations between each severity factor and epilepsy, within two large samples of children with ASD. In summary, we found that each severity factor-presence of intellectual disability, presence of language atypicalities, ASD-specific symptoms severity, and presence of motor issues-independently predicted a small increased risk for epilepsy, countering the argument that IQ alone is a risk factor. We also examined whether epilepsy is associated with developmental regression. Although severe epilepsy syndromes such as Landau-Kleffner syndrome are known to cause autistic-like symptoms following developmental regression, there is controversy about whether other forms of epilepsy are associated with the more common developmental regression seen in many young children with epilepsy. Indeed, we found a small association between epilepsy and developmental regression.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Alison R Marvin
- Department of Medical Informatics, Interactive Autism Network at Kennedy Krieger, Baltimore, Maryland
| | - Kiely Law
- Department of Medical Informatics, Interactive Autism Network at Kennedy Krieger, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul H Lipkin
- Department of Medical Informatics, Interactive Autism Network at Kennedy Krieger, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Jia JL, Chen S, Sivarajah V, Stephens D, Cortez MA. Latitudinal differences on the global epidemiology of infantile spasms: systematic review and meta-analysis. Orphanet J Rare Dis 2018; 13:216. [PMID: 30486850 PMCID: PMC6262963 DOI: 10.1186/s13023-018-0952-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infantile spasms represent the catastrophic, age-specific seizure type associated with acute and long-term neurological morbidity. However, due to rarity and heterogenous determination, there is persistent uncertainty of its pathophysiological and epidemiological characteristics. The purpose of the current study was to address a historically suspected latitudinal basis of infantile spasms incidence, and to interrogate a geographical basis of epidemiology, including the roles of latitude and other environmental factors, using meta-analytic and -regression methods. METHODS A systematic search was performed in Ovid MEDLINE and Embase for primary reports on infantile spasms incidence and prevalence epidemiology. RESULTS One thousand fifteen studies were screened to yield 54 eligible publications, from which 39 incidence figures and 18 prevalence figures were extracted. The pooled incidence was 0.249 cases/1000 live births. The pooled prevalence was 0.015 cases/1000 population. Univariate meta-regression determined a continental effect, with Europe demonstrating the highest onset compared from Asia (OR = 0.51, p = 0.004) and from North America (OR = 0.50, p = 0.004). Latitude was also positively correlated with incidence globally (OR = 1.02, p < 0.001). Sub-analyses determined a particularly elevated Scandinavian incidence compared to the rest of world (OR = 1.88, p < 0.001), and lack of latitudinal effect with Scandinavian exclusion (p = 0.10). Metrics of healthcare quality did not predict incidence. Multiple meta-regression determined that latitude was the key predictor of incidence (OR = 1.02, p = 0.001). CONCLUSIONS This is the first systematic epidemiological study of infantile spasms. Limitations included lack of Southern hemispheric representation, insufficient study selection and size to support some sub-continental analyses, and lack of accessible ethnic and healthcare quality data. Meta-analyses determined a novel, true geographical difference in incidence which is consistent with a latitudinal and/or ethnic contribution to epileptogenesis. These findings justify the establishment of a global registry of infantile spasms epidemiology to promote future systematic studies, clarify risk factors, and expand understanding of the pathophysiology.
Collapse
Affiliation(s)
- Jason L. Jia
- Department of Medicine, University of Toronto, 190 Elizabeth Street R. Fraser Elliott Wing, Toronto, M5G 2C4 Canada
| | - Shiyi Chen
- Child Health Evaluative Sciences Research Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Vishalini Sivarajah
- Department of Medicine, University of Toronto, 190 Elizabeth Street R. Fraser Elliott Wing, Toronto, M5G 2C4 Canada
| | - Derek Stephens
- Child Health Evaluative Sciences Research Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Miguel A. Cortez
- Department of Pediatrics, Division of Neurology, University of Toronto, Toronto, Canada
- Neurosciences & Mental Health Program, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| |
Collapse
|
13
|
Orsini A, Zara F, Striano P. Recent advances in epilepsy genetics. Neurosci Lett 2018; 667:4-9. [DOI: 10.1016/j.neulet.2017.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 01/10/2023]
|
14
|
Lee AR, Kim JH, Cho E, Kim M, Park M. Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Disease-Related Genes during Postnatal Development. Front Mol Neurosci 2017; 10:331. [PMID: 29085281 PMCID: PMC5650623 DOI: 10.3389/fnmol.2017.00331] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023] Open
Abstract
The dorsal and ventral regions of the hippocampus are important in cognitive and emotional processing, respectively. Various approaches have revealed the differential molecular and structural characteristics, and functional roles of the hippocampus. Recent RNA sequencing (RNA-seq) technology has enriched our understanding of the hippocampus by elucidating more detailed information on gene expression patterns. However, no RNA-seq–based study on gene profiles in the developing hippocampus has been reported. Using RNA-seq–based bioinformatic analysis in conjunction with quantitative real-time polymerase chain reaction analysis and a comparison of in situ hybridization data obtained from the Allen Brain Atlas, we provide a thorough analysis of differentially expressed genes in the dorsal and ventral hippocampus at specific developmental ages representing the postnatally maturing hippocampus. Genes associated with particular functional pathways and marker genes for particular neurological diseases were found to be distinctively segregated within either the dorsal or ventral hippocampus at specific or at all developmental ages examined. We also report novel molecular markers enriched in the dorsal or ventral hippocampus. Taken together, this study provides insights into the molecular mechanisms underlying physiological functions linked to the dorsal or ventral hippocampus. The information provided in the study also contributes to a better understanding of brain functions and serves as a resource for future studies on the pathophysiology of dorsal and ventral hippocampal functions.
Collapse
Affiliation(s)
- A-Ram Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Eunsil Cho
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
15
|
Bonanni P, Negrin S, Antoniazzi L, Da Rold M, Fabbro F, Serafini A. Clinical implications of interictal epileptiform discharges in cognitive functioning in CEC syndrome with evolution into epileptic encephalopathy. Neurocase 2017; 23:230-238. [PMID: 28929921 DOI: 10.1080/13554794.2017.1380202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In epileptic encephalopathies (EE), interictal epileptiform discharges (IEDs) contribute to cognitive impairment. The EE process has been studied in a patient affected by epilepsy with occipital calcification and celiac disease (CEC syndrome) by combining the administration of brain area stimulus specific (visual and auditory) reaction times (RT) during continuous EEG monitoring with the off-line reconstruction of auditory and visual evoked potentials (EP). Visual RT and VEP were abnormal only if recorded concomitantly to the IEDs. Auditory RT and EP were normal. When the EE process is going on, IEDs transiently disrupt aspects of cortical functioning, contributing to the cognitive impairment.
Collapse
Affiliation(s)
- Paolo Bonanni
- a Epilepsy and Neurophysiology Unit , Scientific Institute, IRCCS Eugenio Medea , Treviso , Italy
| | - Susanna Negrin
- a Epilepsy and Neurophysiology Unit , Scientific Institute, IRCCS Eugenio Medea , Treviso , Italy
| | - Lisa Antoniazzi
- a Epilepsy and Neurophysiology Unit , Scientific Institute, IRCCS Eugenio Medea , Treviso , Italy
| | - Martina Da Rold
- a Epilepsy and Neurophysiology Unit , Scientific Institute, IRCCS Eugenio Medea , Treviso , Italy
| | - Franco Fabbro
- a Epilepsy and Neurophysiology Unit , Scientific Institute, IRCCS Eugenio Medea , Treviso , Italy
| | - Anna Serafini
- b Department of Medical and Biological Sciences , University of Udine , Udine , Italy
| |
Collapse
|
16
|
Velíšek L. Knockin' Out the Spasms. Epilepsy Curr 2017; 17:177-179. [PMID: 28684956 PMCID: PMC5486431 DOI: 10.5698/1535-7511.17.3.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
|