1
|
Jung SH, Hwang UJ, Ahn SH, Kim JH, Kwon OY. Effects of Manual Therapy and Mechanical Massage on Spinal Alignment, Extension Range of Motion, Back Extensor Electromyographic Activity, and Thoracic Extension Strength in Individuals with Thoracic Hyperkyphosis: A Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6526935. [PMID: 33299454 PMCID: PMC7707944 DOI: 10.1155/2020/6526935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Manual therapy has been recommended to reduce and prevent musculoskeletal problems related to thoracic hyperkyphosis. With recent rapid technological developments, manual techniques can now be implemented by mechanical devices; hence, mechanical massage can manipulate the back muscles and mobilize the spine. PURPOSE Here, we aimed to 1) determine the effects of mechanical massage and manual therapy and 2) compare their effects on spinal posture, extension range of motion, trunk extensor electromyographic activity, and thoracic extension strength in individuals with thoracic hyperkyphosis. METHODS Participants with thoracic hyperkyphosis were randomly assigned to the manual therapy (n = 16) or mechanical massage (n = 19) group. Each intervention was applied for 8 weeks. The participants' spinal posture, extension range of motion, trunk extensor electromyographic activity, and thoracic extension strength were measured before and after intervention. RESULTS Intergroup analyses revealed no significant differences in any variables. However, thoracic kyphosis angle, thoracic extension range of motion, longissimus thoracis electromyographic activity, iliocostalis lumborum pars lumborum activity, and thoracic extension strength differed significantly in intertime analyses. The results of paired t-test analysis showed that thoracic kyphosis angle, thoracic extension range of motion, longissimus thoracis electromyographic activity, and thoracic extension strength were significantly different after intervention in both groups (p < 0.05). CONCLUSIONS Mechanical massage and manual therapy effectively improve thoracic kyphosis angle, thoracic extension range of motion, and thoracic extension strength. Therefore, mechanical massage is an alternative intervention to manual therapy for improving thoracic kyphosis angle, thoracic extension range of motion, and thoracic extension strength in participants with hyperkyphosis. This trail is registered with KCT0004527.
Collapse
Affiliation(s)
- Sung-hoon Jung
- Department of Physical Therapy, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| | - Ui-jae Hwang
- Department of Physical Therapy, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| | - Sun-hee Ahn
- Department of Physical Therapy, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| | - Jun-hee Kim
- Department of Physical Therapy, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| | - Oh-yun Kwon
- Department of Physical Therapy, Yonsei University, Wonju, Kangwon-Do, Republic of Korea
| |
Collapse
|
2
|
Repeated end range spinal movement while seated abolishes the proprioceptive deficit induced by prolonged flexed sitting posture. A study assessing the statistical and clinical significance of spinal position sense. Musculoskelet Sci Pract 2017. [PMID: 28624723 DOI: 10.1016/j.msksp.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sustained spinal flexion has been proposed to affect the properties of spinal tissues, increase postural muscle's activation latency and act detrimentally on proprioception. OBJECTIVES This study evaluated the effect of flexed posture (FP) on spinal proprioception and assessed the immediate effect of spinal movement on the presumable flexion-induced proprioceptive deficit. DESIGN Clinical measurement study. METHODS Marker-based kinematic analyses of the head, spine, and pelvis were conducted on 50 individuals. Subjects were educated in a lordotic sitting posture (IOSP) that they reproduced immediately; after 10 and 30 min in FP; and after sagittal spinal movement. Nine sagittal angles were calculated. Absolute error (AE) and constant error (CE) were used to evaluate repositioning accuracy. Repeated measures ANOVA was used to test for significant differences in angles obtained among postures, as well as for the AE and CE calculated from the trials. RESULTS No significant differences were found in reposition error (RE) after immediate reproduction of IOSP (all p > 0.0083). Following FP AEs presented significant differences for head (4.1°), head protraction (1.9°), head tilt (2.1°), lumbar (3.2°) and pelvis angle (2.1°). CEs revealed significant differences for head protraction (-1.8°) and lumbar angle (-3.5°). No significant differences were found for AE and CE after spinal sagittal movement (all p > 0.0083). CONCLUSIONS Prolonged FP can affect spinal position sense, but sagittal spinal movement can abolish the proprioceptive deficit. The significant differences documented, may be of limited clinical utility given their magnitude, and the reliability data presented may be of use in reinterpreting previously documented proprioceptive analyses.
Collapse
|
3
|
Ge W, Roth E, Sansone A. A quasi-experimental study on the effects of instrument assisted soft tissue mobilization on mechanosensitive neurons. J Phys Ther Sci 2017; 29:654-657. [PMID: 28533604 PMCID: PMC5430267 DOI: 10.1589/jpts.29.654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
[Purpose] Instrument Assisted Soft Tissue Mobilization (IASTM) is a form of manual
therapy. Despite its growing popularity and an increasing number of patients receiving
IASTM each year, there is a lack of high-level evidence to elucidate its therapeutic
mechanisms and to support its clinical applications. The purpose of this research project
was to determine the effects of IASTM on activities of mechanosensitive neurons in skin.
[Subjects and Methods] Twenty-three subjects, 9 females and 14 males, mean age 25.7 (SD
6.4) years old were recruited through a convenience sampling on the university campus. The
study design was a quasi-experimental study using single group pretest-posttest design.
The activities of mechanosensitive neurons were measured before and after the application
of IASTM. [Results] The mean 2-point discrimination was 40.2 (SD 9.4) mm before IASTM and
increased to 44.9 (SD 12.0) mm after IASTM. The increase was statistically significant pre
and post IASTM. The mean pain threshold was 18.2 (SD 6.6) lb and increased slightly to
18.7 (SD 6.8) lb after IASTM; however, no statistical significance was found pre and post
IASTM. [Conclusion] The data indicates that IASTM changes the neural activities in 2-point
discrimination but not in pain threshold.
Collapse
Affiliation(s)
- Weiqing Ge
- Department of Physical Therapy, Youngstown State University, USA
| | - Emily Roth
- Department of Physical Therapy, Youngstown State University, USA
| | - Alyssa Sansone
- Department of Physical Therapy, Youngstown State University, USA
| |
Collapse
|
4
|
Is There a Relationship Between Lumbar Proprioception and Low Back Pain? A Systematic Review With Meta-Analysis. Arch Phys Med Rehabil 2016; 98:120-136.e2. [PMID: 27317866 DOI: 10.1016/j.apmr.2016.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To systematically review the relationship between lumbar proprioception and low back pain (LBP). DATA SOURCES Four electronic databases (PubMed, EMBASE, CINAHL, SPORTDiscus) and reference lists of relevant articles were searched from inception to March-April 2014. STUDY SELECTION Studies compared lumbar proprioception in patients with LBP with controls or prospectively evaluated the relationship between proprioception and LBP. Two reviewers independently screened articles and determined inclusion through consensus. DATA EXTRACTION Data extraction and methodologic quality assessment were independently performed using standardized checklists. DATA SYNTHESIS Twenty-two studies (1203 participants) were included. Studies measured lumbar proprioception via active or passive joint repositioning sense (JRS) or threshold to detection of passive motion (TTDPM). Data from 17 studies were pooled for meta-analyses to compare patients with controls. Otherwise, descriptive syntheses were performed. Data were analyzed according to measurement method and LBP subgroup. Active JRS was worse in patients compared with controls when measured in sitting (standard mean difference, .97; 95% confidence interval [CI], .31-1.64). There were no differences between groups measured via active JRS in standing (standard mean difference, .41; 95% CI, -.07 to .89) or passive JRS in sitting (standard mean difference, .38; 95% CI, -.83 to 1.58). Patients in the O'Sullivan flexion impairment subgroup had worse proprioception than the total LBP cohort. The TTDPM was significantly worse in patients than controls. One prospective study found no link between lumbar proprioception and LBP. CONCLUSIONS Patients with LBP have impaired lumbar proprioception compared with controls when measured actively in sitting positions (particularly those in the O'Sullivan flexion impairment subgroup) or via TTDPM. Clinicians should consider the relationship between sitting and proprioception in LBP and subgroup patients to guide management. Further studies focusing on subgroups, longitudinal assessment, and improving proprioception measurement are needed.
Collapse
|
5
|
Artz NJ, Adams MA, Dolan P. Sensorimotor function of the cervical spine in healthy volunteers. Clin Biomech (Bristol, Avon) 2015; 30:260-8. [PMID: 25686675 PMCID: PMC4372261 DOI: 10.1016/j.clinbiomech.2015.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sensorimotor mechanisms are important for controlling head motion. However, relatively little is known about sensorimotor function in the cervical spine. This study investigated how age, gender and variations in the test conditions affect measures of position sense, movement sense and reflex activation in cervical muscles. METHODS Forty healthy volunteers (19M/21F, aged 19-59 years) participated. Position sense was assessed by determining repositioning errors in upright and flexed neck postures during tests performed in 25%, 50% and 75% cervical flexion. Movement sense was assessed by detecting thresholds to passive flexion and extension at velocities between 1 and 25°s(-1). Reflexes were assessed by determining the latency and amplitude of reflex activation in trapezius and sternocleidomastoid muscles. Reliability was evaluated from intraclass correlation coefficients. FINDINGS Mean repositioning errors ranged from 1.5° to 2.6°, were greater in flexed than upright postures (P=0.006) and in people aged over 25 years (P=0.05). Time to detect head motion decreased with increasing velocity (P<0.001) and was lower during flexion than extension movements (P=0.002). Reflexes demonstrated shorter latency (P<0.001) and greater amplitude (P=0.009) in trapezius compared to sternocleidomastoid, and became slower and weaker with age. None of the measures were influenced by gender. Reliability was good for movement sense measures, but was influenced by the test conditions when assessing position sense. INTERPRETATION Increased repositioning errors and slower reflexes in older subjects suggest that sensorimotor function in the cervical spine becomes impaired with age. In position sense tests, reliability was influenced by the test conditions with mid-range flexion movements, performed in standing, providing the most reliable measurements.
Collapse
Affiliation(s)
| | | | - Patricia Dolan
- Corresponding author at: Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK.
| |
Collapse
|
6
|
Park KH, Oh JS, An DH, Yoo WG, Kim JM, Kim TH, Kang MH. Difference in Selective Muscle Activity of Thoracic Erector Spinae During Prone Trunk Extension Exercise in Subjects With Slouched Thoracic Posture. PM R 2014; 7:479-84. [PMID: 25463688 DOI: 10.1016/j.pmrj.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
|
7
|
Cao DY, Pickar JG. Effect of spinal manipulation on the development of history-dependent responsiveness of lumbar paraspinal muscle spindles in the cat. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2014; 58:149-159. [PMID: 24932019 PMCID: PMC4045034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We determined whether spinal manipulation could prevent and/or reverse the decrease and increase in paraspinal muscle spindle responsiveness caused respectively by lengthening and shortening histories of the lumbar muscles. Single unit spindle activity from multifidus and longissimus muscles was recorded in the L6 dorsal root in anesthetized cats. Muscle history was created and spinal manipulation delivered (thrust amplitude: 1.0mm, duration: 100ms) using a feedback-controlled motor attached to the L6 spinous process. Muscle spindle discharge to a fixed vertebral position (static test) and to vertebral movement (dynamic test) was evaluated following the lengthening and shortening histories. For the static test, changes in muscle spindle responsiveness were significantly less when spinal manipulation followed muscle history (p<0.01), but not when spinal manipulation preceded it (p>0.05). For the dynamic test, spinal manipulation did not significantly affect the history-induced change in muscle spindle responsiveness. Spinal manipulation may partially reverse the effects of muscle history on muscle spindle signaling of vertebral position.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Palmer Center for Chiropractic Research, Davenport, IA
| | - Joel G. Pickar
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD
| |
Collapse
|
8
|
Reed WR, Long CR, Kawchuk GN, Pickar JG. Neural responses to the mechanical parameters of a high-velocity, low-amplitude spinal manipulation: effect of preload parameters. J Manipulative Physiol Ther 2014; 37:68-78. [PMID: 24387888 DOI: 10.1016/j.jmpt.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The purpose of this study was to determine how the preload that precedes a high-velocity, low-amplitude spinal manipulation (HVLA-SM) affects muscle spindle input from lumbar paraspinal muscles both during and after the HVLA-SM. METHODS Primary afferent activity from muscle spindles in lumbar paraspinal muscles were recorded from the L6 dorsal root in anesthetized cats. High-velocity, low-amplitude spinal manipulation of the L6 vertebra was preceded either by no preload or systematic changes in the preload magnitude, duration, and the presence or absence of a downward incisural point. Immediate effects of preload on muscle spindle responses to the HVLA-SM were determined by comparing mean instantaneous discharge frequencies (MIF) during the HVLA-SM's thrust phase with baseline. Longer lasting effects of preload on spindle responses to the HVLA-SM were determined by comparing MIF during slow ramp and hold movement of the L6 vertebra before and after the HVLA-SM. RESULTS The smaller compared with the larger preload magnitude and the longer compared with the shorter preload duration significantly increased (P = .02 and P = .04, respectively) muscle spindle responses during the HVLA-SM thrust. The absence of preload had the greatest effect on the change in MIF. Interactions between preload magnitude, duration, and downward incisural point often produced statistically significant but arguably physiologically modest changes in the passive signaling properties of the muscle spindle after the manipulation. CONCLUSION Because preload parameters in this animal model were shown to affect neural responses to an HVLA-SM, preload characteristics should be taken into consideration when judging this intervention's therapeutic benefit in both clinical efficacy studies and in clinical practice.
Collapse
Affiliation(s)
- William R Reed
- Associate Professor, Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, Iowa
| | - Cynthia R Long
- Professor, Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, Iowa
| | - Gregory N Kawchuk
- Associate Professor, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Joel G Pickar
- Professor Emeritus, Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, Iowa.
| |
Collapse
|
9
|
Ge W, Pickar JG. The decreased responsiveness of lumbar muscle spindles to a prior history of spinal muscle lengthening is graded with the magnitude of change in vertebral position. J Electromyogr Kinesiol 2012; 22:814-20. [PMID: 22721784 DOI: 10.1016/j.jelekin.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/07/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022] Open
Abstract
In the lumbar spine, muscle spindle responsiveness is affected by the duration and direction of a lumbar vertebra's positional history. The purpose of the present study was to determine the relationship between changes in the magnitude of a lumbar vertebra's positional history and the responsiveness of lumbar muscle spindles to a subsequent vertebral position and subsequent vertebral movement. Neural activity from multifidus and longissimus muscle spindle afferents in deeply anesthetized cats was recorded while creating positional histories of the L(6) vertebra. History was induced using a displacement-controlled feedback motor. It held the L(6) vertebra for 4 s at an intermediate position (hold-intermediate at 0 mm) and at seven positions from 0.07 to 1.55 mm more ventralward and dorsalward which lengthened (hold-long) and shortened (hold-short) the lumbar muscles. Following the conditioning hold positions, L(6) was returned to the intermediate position. Muscle spindle discharge at this position and during a lengthening movement was compared between hold-intermediate and hold-short conditionings and between hold-intermediate and hold-short conditionings. We found that regardless of conditioning magnitude, the seven shortening magnitudes similarly increased muscle spindle responsiveness to both vertebral position and movement. In contrast, the seven lengthening magnitudes produced a graded decrease in responsiveness to both position and movement. The decrease to position became maximal following conditioning magnitudes of ∼0.75 mm. The decrease to movement did not reach a maximum even with conditioning magnitudes of ∼1.55 mm. The data suggest that the fidelity of proprioceptive information from muscle spindles in the low back is influenced by small changes in the previous length history of lumbar muscles.
Collapse
Affiliation(s)
- Weiqing Ge
- Palmer College of Chiropractic, Palmer Center for Chiropractic Research, Davenport, IA, USA
| | | |
Collapse
|
10
|
Adamczewski T, Grabowska A, Kujawa J. Is there any coexistence of sacroiliac joints dysfunction with dysfunctions of occipito-atlanto-axial complex? Part II: The biomechanical aspect. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.poamed.2012.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Ge W, Cao DY, Long CR, Pickar JG. Plane of vertebral movement eliciting muscle lengthening history in the low back influences the decrease in muscle spindle responsiveness of the cat. J Appl Physiol (1985) 2011; 111:1735-43. [PMID: 21960662 DOI: 10.1152/japplphysiol.00059.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprioceptive feedback is thought to play a significant role in controlling both lumbopelvic and intervertebral orientations. In the lumbar spine, a vertebra's positional history along the dorsal-ventral axis has been shown to alter the position, movement, and velocity sensitivity of muscle spindles in the multifidus and longissimus muscles. These effects appear due to muscle history. Because spinal motion segments have up to 6 degrees of freedom for movement, we were interested in whether the axis along which the history is applied differentially affects paraspinal muscle spindles. We tested the null hypothesis that the loading axis, which creates a vertebra's positional history, has no effect on a lumbar muscle spindle's subsequent response to vertebral position or movement. Identical displacements were applied along three orthogonal axes directly at the L(6) spinous process using a feedback motor system under displacement control. Single-unit nerve activity was recorded from 60 muscle spindle afferents in teased filaments from L(6) dorsal rootlets innervating intact longissimus or multifidus muscles of deeply anesthetized cats. Muscle lengthening histories along the caudal-cranial and dorsal-ventral axis, compared with the left-right axis, produced significantly greater reductions in spindle responses to vertebral position and movement. The spinal anatomy suggested that the effect of a lengthening history is greatest when that history had occurred along an axis lying within the anatomical plane of the facet joint. Speculation is made that the interaction between normal spinal mechanics and the inherent thixotropic property of muscle spindles poses a challenge for feedback and feedforward motor control of the lumbar spine.
Collapse
Affiliation(s)
- Weiqing Ge
- Palmer Center for Chiropractic Research, Davenport, IA 52803, USA
| | | | | | | |
Collapse
|
12
|
Cao DY, Pickar JG. Lengthening but not shortening history of paraspinal muscle spindles in the low back alters their dynamic sensitivity. J Neurophysiol 2010; 105:434-41. [PMID: 21047939 DOI: 10.1152/jn.00498.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprioception is considered important for maintaining spinal stability and for controlling posture and movement in the low back. Previous studies demonstrate the presence of thixotropic properties in lumbar muscle spindles, wherein a vertebra's positional history alters spindle responsiveness to position and movement. This study investigated whether a vertebra's movement history affects the velocity sensitivity of paraspinal muscle spindles in the low back. Afferent activity from multifidus and longissimus muscle spindles was recorded in the L(6) dorsal root in 30 anesthetized cats. To alter movement history, a feedback-controlled motor attached to the L(6) spinous process held (conditioned for 4 s) the L(6) vertebra at an intermediate position or at positions that either lengthened or shortened the muscles. With the vertebra returned to the intermediate position, resting spindle discharge was measured over the next 0.5 s (static test) and then during a dynamic test consisting of ramp vertebral movement at four velocities (0.2, 0.5, 1.0, 2.0 mm/s). Spindle activity during the tests was measured relative to hold-intermediate. For both tests, hold-long decreased and hold-short increased muscle spindle responsiveness. For the static test position responsiveness was not different among the velocity protocols for either hold-long or hold-short (P = 0.42 and 0.24, respectively). During the dynamic test, hold-long conditioning significantly decreased [F((3,119)) = 7.99, P < 0.001] spindle responsiveness to increasing velocity. Mean velocity sensitivity was 4.44, 3.39, and 1.41 (impulses/s)/(mm/s) for the hold-short, hold-intermediate, and hold-long protocols, respectively. The nearly 2.5-fold decrease in velocity sensitivity following hold-long was significantly less than that for either hold-intermediate (P = 0.005) or hold-short conditioning (P < 0.001). Hold-short conditioning had little effect on velocity responses during the dynamic test [F((3,119)) = 0.23, P = 0.87]. In conclusion, only movement histories that stretch but not shorten muscle spindles alter their velocity sensitivity. In the low back, forward flexion and lateral bending postures would likely be the most provocative.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, 741 Brady Street, Davenport, IA 52803, USA
| | | |
Collapse
|
13
|
Abstract
STUDY DESIGN Intervention study on healthy human subjects. OBJECTIVE To determine whether reflex activation of the back muscles is influenced by muscle fatigue or soft tissue creep in the spine. SUMMARY OF BACKGROUND DATA Reflex contraction of the back muscles normally acts to limit spinal flexion, and hence protect the underlying spine from injury. However, repeated flexion allows bending moments on the spine to increase. Impaired reflexes as a result of fatigue or soft tissue creep may be contributing factors. METHODS A total of 15 healthy volunteers (8 females/7 males aged 23-55 years) underwent 2 interventions, on separate days: (a) sitting flexed for 1 hour to induce creep and (b) performing the Biering-Sorensen test to induce back muscle fatigue. Before and after each intervention, reflex activation of the erector spinae in response to sudden trunk flexion (initiated by a Kin-Com dynamometer) was monitored bilaterally at T10 and L3 using surface electromyography (EMG) electrodes. These recordings indicated the onset latency of reflex activation, the peak EMG, and time to peak, at each site. Measurements before and after each intervention and between muscle sites were compared using a 2-way repeated measures Analysis of Variance. RESULTS Spinal creep was confirmed by an increase in maximum flexion of 2.3 degrees +/- 2.5 degrees (P = 0.003), and fatigue by a significant fall in median frequency at one or more sites. Following creep, onset latency increased from 60 +/- 12 milliseconds to 96 +/- 26 milliseconds (P < 0.001) but there was no change in peak EMG or time to peak EMG. Differences between sites (P = 0.004) indicated greater latencies in lumbar compared to thoracic regions, especially after creep. Muscle fatigue had no significant effects on any of the measured parameters. CONCLUSION Prolonged spinal flexion can impair sensorimotor control mechanisms and reduce back muscle protection of the underlying spine. The effect is due to time-dependent "creep" in soft tissues rather than muscle fatigue.
Collapse
|
14
|
Cao DY, Pickar JG. Thoracolumbar fascia does not influence proprioceptive signaling from lumbar paraspinal muscle spindles in the cat. J Anat 2009; 215:417-24. [PMID: 19627391 PMCID: PMC2766059 DOI: 10.1111/j.1469-7580.2009.01128.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2009] [Indexed: 01/14/2023] Open
Abstract
The thoracolumbar fascia attaches to the lumbar spinous processes and encloses the paraspinal muscles to form a muscle compartment. Because muscle spindles can respond to transverse forces applied at a muscle's surface, we were interested in the mechanical effects this fascia may have on proprioceptive signaling from lumbar paraspinal muscles during vertebral movement. The discharge of paraspinal muscle spindles at rest and in response to muscle history were investigated in the presence and absence of the thoracolumbar fascia in anesthetized cats. Muscle-history was induced by positioning the L(6) vertebra in conditioning directions that lengthened and shortened the paraspinal muscles. The vertebra was then returned to an intermediate position for testing the spindles. Neither resting discharge (P = 0.49) nor the effects of muscle history (P > 0.30) was significantly different with the fascia intact vs. removed. Our data showed that the thoracolumbar fascia did not influence proprioceptive signaling from lumbar paraspinal muscles spindles during small passive vertebral movements in cats. In addition, comparison of the transverse threshold pressures needed to stimulate our sample of muscle spindles in the cat with the thoracolumbar fascia compartmental pressures measured in humans during previous studies suggests that the thoracolumbar fascia likely does not affect proprioceptive signaling from lumbar paraspinal muscle spindles in humans.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA 52803, USA
| | | |
Collapse
|
15
|
He X, La Rose J, Zhang N. Integrated neuroscience program: an alternative approach to teaching neurosciences to chiropractic students. THE JOURNAL OF CHIROPRACTIC EDUCATION 2009; 23:134-46. [PMID: 19826541 PMCID: PMC2759991 DOI: 10.7899/1042-5055-23.2.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 10/29/2008] [Accepted: 04/26/2009] [Indexed: 05/27/2023]
Abstract
PURPOSE Most chiropractic colleges do not offer independent neuroscience courses because of an already crowded curriculum. The Palmer College of Chiropractic Florida has developed and implemented an integrated neuroscience program that incorporates neurosciences into different courses. The goals of the program have been to bring neurosciences to students, excite students about the interrelationship of neuroscience and chiropractic, improve students' understanding of neuroscience, and help the students understand the mechanisms underpinning the chiropractic practice. This study provides a descriptive analysis on how the integrated neuroscience program is taught via students' attitudes toward neuroscience and the comparison of students' perceptions of neuroscience content knowledge at different points in the program. METHODS A questionnaire consisting of 58 questions regarding the neuroscience courses was conducted among 339 students. The questionnaire was developed by faculty members who were involved in teaching neuroscience and administered in the classroom by faculty members who were not involved in the study. RESULTS Student perceptions of their neuroscience knowledge, self-confidence, learning strategies, and knowledge application increased considerably through the quarters, especially among the 2nd-year students. CONCLUSIONS The integrated neuroscience program achieved several of its goals, including an increase in students' confidence, positive attitude, ability to learn, and perception of neuroscience content knowledge. The authors believe that such gains can expand student ability to interpret clinical cases and inspire students to become excited about chiropractic research. The survey provides valuable information for teaching faculty to make the course content more relevant to chiropractic students.
Collapse
Affiliation(s)
| | | | - Niu Zhang
- Palmer College of Chiropractic Florida
| |
Collapse
|