1
|
Shalash W, Forcier R, Higgins AZ, Giers MB. Cryopreserving the intact intervertebral disc without compromising viability. JOR Spine 2024; 7:e1351. [PMID: 39104830 PMCID: PMC11299906 DOI: 10.1002/jsp2.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Background Tissue cryopreservation requires saturation of the structure with cryoprotectants (CPAs) that are also toxic to cells within a short timeframe unless frozen. The race between CPA delivery and cell death is the main barrier to realizing transplantation banks that can indefinitely preserve tissues and organs. Unrealistic cost and urgency leaves less life-threatening ailments unable to capitalize on traditional organ transplantation systems that immediately match and transport unfrozen organs. For instance, human intervertebral discs (IVD) could be transplanted to treat back pain or used as ex vivo models for studying regenerative therapies, but both face logistical hurdles in organ acquisition and transport. Here we aimed to overcome those challenges by cryopreserving intact IVDs using compressive loading and swelling to accelerate CPA delivery. Methods CPAs were tested on bovine nucleus pulposus cells to determine the least cytotoxic solution. Capitalizing on our CPAs Computed Tomography (CT) contrast enhancement, we imaged and quantified saturation time in intact bovine IVDs under different conditions in a bioreactor. Finally, the entire protocol was tested, including 1 week of frozen storage, to confirm tissue viability in multiple IVD regions after thawing. Results Results showed cryopreserving medium containing dimethyl sulfoxide and ethylene glycol gave over 7.5 h before cytotoxicity. While non-loaded IVDs required over 3 days to fully saturate, a dynamic loading protocol followed by CPA addition and free-swelling decreased saturation time to <5 h. After cryopreserving IVDs for 1 week with the optimized CPA and permeation method, all IVD regions had 85% cell viability, not significantly different from fresh unfrozen controls. Conclusions This study created a novel solution to a roadblock in IVD research and development. Using post-compression swelling CPA can be delivered to an intact IVD over 20× more quickly than previous methods, enabling cryopreservation of the IVD with no detectable loss in cell viability.
Collapse
Affiliation(s)
- Ward Shalash
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Ryan Forcier
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Adam Z. Higgins
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Morgan B. Giers
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
2
|
The Radial Bulging and Axial Strains of Intervertebral Discs during Creep Obtained with the 3D-DIC System. Biomolecules 2022; 12:biom12081097. [PMID: 36008991 PMCID: PMC9405674 DOI: 10.3390/biom12081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Creep-associated changes in disc bulging and axial strains are essential for the research and development of mechano-bionic biomaterials and have been assessed in various ways in ex vivo creep studies. Nonetheless, the reported methods for measurement were limited by location inaccuracy, a lack of synchronousness, and destructiveness. To this end, this study focuses on the accurate, synchronous, and noninvasive assessment of bugling and strains using the 3D digital image correlation (3D-DIC) system and the impact of creep on them. After a preload of 30 min, the porcine cervical discs were loaded with different loads for 4 h of creep. Axial strains and lateral bulging of three locations on the discs were synchronously measured. The three-parameter solid model and the newly proposed horizontal asymptote models were used to fit the acquired data. The results showed that the load application reduced disc strains by 6.39% under 300 N, 11.28% under 400 N, and 12.59% under 500 N. Meanwhile, the largest protrusion occurred in the middle of discs with a bugling of 1.50 mm, 1.67 mm, and 1.87 mm. Comparison of the peer results showed that the 3D-DIC system could be used in ex vivo biomechanical studies with reliability and had potential in the assessment of the mechanical behavior of novel biomaterials. The phenomenon of the largest middle protrusion enlightened further the strength of spinal implants in this area. The mathematical characterizations of bulging and strains under different loads yielded various model parameters, which are prerequisites for developing implanted biomaterials.
Collapse
|
3
|
Dixon AR, Warren JP, Culbert MP, Mengoni M, Wilcox RK. Review of in vitro mechanical testing for intervertebral disc injectable biomaterials. J Mech Behav Biomed Mater 2021; 123:104703. [PMID: 34365096 DOI: 10.1016/j.jmbbm.2021.104703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 01/17/2023]
Abstract
Many early stage interventions for intervertebral disc degeneration are under development involving injection of a biomaterial into the affected tissue. Due to the complex mechanical behaviour of the intervertebral disc, there are challenges in comprehensively evaluating the performance of these injectable biomaterials in vitro. The aim of this review was to examine the different methods that have been developed to mechanically test injectable intervertebral disc biomaterials in an in vitro disc model. Testing methods were examined with emphasis on overall protocol, artificial degeneration method, mechanical testing regimes and injection delivery. Specifically, the effects of these factors on the evaluation of different aspects of device performance was assessed. Broad testing protocols varied between studies and enabled evaluation of different aspects of an injectable treatment. Studies employed artificial degeneration methodologies which were either on a macro scale through mechanical means or on a microscale with biochemical means. Mechanical loading regimes differed greatly across studies, with load being either held constant, ramped to failure, or applied cyclically, with large variability on all loading parameters. Evaluation of the risk of herniation was possible by utilising ramped loading, whereas cyclic loading enabled the examination of the restoration of mechanical behaviour for initial screening of biomaterials and surgical technique optimisation studies. However, there are large variations in the duration or tests, and further work is needed to define an appropriate number of cycles to standardise this type of testing. Biomaterial delivery was controlled by set volume or haptic feedback, and future investigations should generate evidence applying physiological loading during injection and normalisation of injection parameters based on disc size. Based on the reviewed articles and considering clinical risks, a series of recommendations have been made for future intervertebral disc mechanical testing.
Collapse
Affiliation(s)
- A R Dixon
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom.
| | - J P Warren
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - M P Culbert
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - M Mengoni
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - R K Wilcox
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
4
|
McDonnell EE, Buckley CT. Investigating the physiological relevance of ex vivo disc organ culture nutrient microenvironments using in silico modeling and experimental validation. JOR Spine 2021; 4:e1141. [PMID: 34337330 PMCID: PMC8313156 DOI: 10.1002/jsp2.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ex vivo disc organ culture systems have become a valuable tool for the development and pre-clinical testing of potential intervertebral disc (IVD) regeneration strategies. Bovine caudal discs have been widely selected due to their large availability and comparability to human IVDs in terms of size and biochemical composition. However, despite their extensive use, it remains to be elucidated whether their nutrient microenvironment is comparable to human degeneration. AIMS This work aims to create the first experimentally validated in silico model which can be used to predict and characterize the metabolite concentrations within ex vivo culture systems. MATERIALS & METHODS Finite element models of cultured discs governed by previously established coupled reaction-diffusion equations were created using COMSOL Multiphysics. Experimental validation was performed by measuring oxygen, glucose and pH levels within discs cultured for 7 days, in a static compression bioreactor. RESULTS The in silico model was successfully validated through good agreement between the predicted and experimentally measured concentrations. For an ex vivo organ cultured in high glucose medium (4.5 g/L or 25 mM) and normoxia, a larger bovine caudal disc (Cd1-2 to Cd3-4) had a central concentration of ~2.6 %O2, ~8 mM of glucose and a pH value of 6.7, while the smallest caudal discs investigated (Cd6-7 and Cd7-8), had a central concentration of ~6.5 %O2, ~12 mM of glucose and a pH value of 6.9. DISCUSSION This work advances the knowledge of ex vivo disc culture microenvironments and highlights a critical need for optimization and standardization of culturing conditions. CONCLUSION Ultimately, for assessment of cell-based therapies and successful clinical translation based on nutritional demands, it is imperative that the critical metabolite values within organ cultures (minimum glucose, oxygen and pH values) are physiologically relevant and comparable to the stages of human degeneration.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
5
|
Mengoni M, Zapata-Cornelio FY, Wijayathunga VN, Wilcox RK. Experimental and Computational Comparison of Intervertebral Disc Bulge for Specimen-Specific Model Evaluation Based on Imaging. Front Bioeng Biotechnol 2021; 9:661469. [PMID: 34124021 PMCID: PMC8193738 DOI: 10.3389/fbioe.2021.661469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Finite element modelling of the spinal unit is a promising preclinical tool to assess the biomechanical outcome of emerging interventions. Currently, most models are calibrated and validated against range of motion and rarely directly against soft-tissue deformation. The aim of this contribution was to develop an in vitro methodology to measure disc bulge and assess the ability of different specimen-specific modelling approaches to predict disc bulge. Bovine bone-disc-bone sections (N = 6) were prepared with 40 glass markers on the intervertebral disc surface. These were initially magnetic resonance (MR)-imaged and then sequentially imaged using peripheral-qCT under axial compression of 1 mm increments. Specimen-specific finite-element models were developed from the CT data, using three different methods to represent the nucleus pulposus geometry with and without complementary use of the MR images. Both calibrated specimen-specific and averaged compressive material properties for the disc tissues were investigated. A successful methodology was developed to quantify the disc bulge in vitro, enabling observation of surface displacement on qCT. From the finite element model results, no clear advantage was found in using geometrical information from the MR images in terms of the models' ability to predict stiffness or disc bulge for bovine intervertebral disc.
Collapse
Affiliation(s)
- Marlène Mengoni
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | | | | | | |
Collapse
|
6
|
The preconditioning of lithium promotes mesenchymal stem cell-based therapy for the degenerated intervertebral disc via upregulating cellular ROS. Stem Cell Res Ther 2021; 12:239. [PMID: 33853670 PMCID: PMC8048279 DOI: 10.1186/s13287-021-02306-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Abstract Adipose-derived stem cell (ADSC) is one of the most widely used candidate cell for intervertebral disc (IVD) degeneration-related disease. However, the poor survival and low differentiation efficacy in stressed host microenvironment limit the therapeutic effects of ADSC-based therapy. The preconditioning has been found effective to boost the proliferation and the functioning of stem cells in varying pathological condition. Lithium is a common anti-depression drug and has been proved effective to enhance stem cell functioning. In this study, the effects of preconditioning using LiCl on the cellular behavior of ADSC was investigated, and specially in a degenerative IVD-like condition. Method The cellular toxicity on rat ADSC was assessed by detecting lactate dehydrogenase (LDH) production after treatment with a varying concentration of lithium chloride (LiCl). The proliferative capacity of ADSC was determined by detecting Ki67 expression and the relative cell number of ADSC. Then, the preconditioned ADSC was challenged by a degenerative IVD-like condition. And the cell viability as well as the nucleus pulpous (NP) cell differentiation efficacy of preconditioned ADSC was evaluated by detecting the major marker expression and extracellular matrix (ECM) deposit. The therapeutic effects of preconditioned ADSC were evaluated using an IVD degeneration rat model, and the NP morphology and ECM content were assessed. Results A concentration range of 1–10 mmol/L of LiCl was applied in the following study, since a higher concentration of LiCl causes a major cell death (about 40%). The relative cell number was similar between preconditioned groups and the control group after preconditioning. The Ki67 expression was elevated after preconditioning. Consistently, the preconditioned ADSC showed stronger proliferation capacity. Besides, the preconditioned groups exhibit higher expression of NP markers than the control group after NP cell induction. Moreover, the preconditioning of LiCl reduced the cell death and promoted ECM deposits, when challenged with a degenerative IVD-like culture. Mechanically, the preconditioning of LiCl induced an increased cellular reactive oxidative species (ROS) level and activation of ERK1/2, which was found closely related to the enhanced cell survival and ECM deposits after preconditioning. The treatment with preconditioned ADSC showed better therapeutic effects than control ADSC transplantation, with better NP preservation and ECM deposits. Conclusion These results suggest that the preconditioning with a medium level of LiCl boosts the cell proliferation and differentiation efficacy under a normal or hostile culture condition via the activation of cellular ROS/ERK axis. It is a promising pre-treatment of ADSC to promote the cell functioning and the following regenerative capacity, with superior therapeutic effects than untreated ADSC transplantation.
Collapse
|
7
|
Wang J, Tao Y, Zhou X, Li H, Liang C, Li F, Chen QX. The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment. Exp Biol Med (Maywood) 2016; 241:2104-2111. [PMID: 27488396 DOI: 10.1177/1535370216662362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies indicated that cell-based therapy could be a promising approach to treat intervertebral disc degeneration. Though the harsh microenvironment in disc is still challenging to implanted cells, it could be overcome by pre-conditioning graft cells before transplantation, suggested by previous literatures. Therefore, we designed this study to identify the potential effect of chondrogenic pre-differentiation on adipose-derived mesenchymal stem cells in intervertebral disc-like microenvironment, characterized by limited nutrition, acidic, and high osmosis in vitro. Adipose-derived mesenchymal stem cells of rat were divided into five groups, embedded in type II collagen scaffold, and cultured in chondrogenic differentiation medium for 0, 3, 7, 10, and 14 days. Then, the adipose-derived mesenchymal stem cells were implanted and cultured in intervertebral disc-like condition. The proliferation and differentiation of adipose-derived mesenchymal stem cells were evaluated by cell counting kit-8 test, real-time quantitative polymerase chain reaction, and Western blotting and immunofluorescence analysis. Analyzed by the first week in intervertebral disc-like condition, the results showed relatively greater proliferative capability and extracellular matrix synthesis ability of the adipose-derived mesenchymal stem cells pre-differentiated for 7 and 10 days than the control. We concluded that pre-differentiation of rat adipose-derived mesenchymal stem cells in chondrogenic culture medium for 7 to 10 days could promote the regeneration effect of adipose-derived mesenchymal stem cells in intervertebral disc-like condition, and the pre-differentiated cells could be a promising cell source for disc regeneration medicine.
Collapse
Affiliation(s)
- Jingkai Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yiqing Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qi-Xin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
8
|
Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 26:799-805. [DOI: 10.1007/s00586-016-4535-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022]
|
9
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Arkesteijn ITM, Mouser VHM, Mwale F, van Dijk BGM, Ito K. A Well-Controlled Nucleus Pulposus Tissue Culture System with Injection Port for Evaluating Regenerative Therapies. Ann Biomed Eng 2015; 44:1798-807. [PMID: 26294008 PMCID: PMC4837215 DOI: 10.1007/s10439-015-1428-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular matrix composition remained unchanged during the culture period and gene expression profiles were similar to those obtained in earlier studies. Furthermore, to test the responsiveness of bovine caudal NPs in the system, samples were cultured for 4 days and injected twice (day 1 and 3) with (1) PBS, (2) Link-N, for regeneration, and (3) TNF-α, for degeneration. It was shown that TNF-α increased COX2 gene expression, whereas no effect of Link-N was detected. In conclusion, the newly designed system allows long-term culture of NP tissue, wherein tissue reactions to injected stimulants can be observed.
Collapse
Affiliation(s)
- Irene T M Arkesteijn
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Vivian H M Mouser
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fackson Mwale
- Division of Orthopaedic Surgery, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Bart G M van Dijk
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Arkesteijn ITM, Smolders LA, Spillekom S, Riemers FM, Potier E, Meij BP, Ito K, Tryfonidou MA. Effect of coculturing canine notochordal, nucleus pulposus and mesenchymal stromal cells for intervertebral disc regeneration. Arthritis Res Ther 2015; 17:60. [PMID: 25890127 PMCID: PMC4396569 DOI: 10.1186/s13075-015-0569-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/19/2015] [Indexed: 12/27/2022] Open
Abstract
Introduction Early degenerative changes in the nucleus pulposus (NP) are observed after the disappearance of notochordal cells (NCs). Thus, it has been suggested that NCs play an important role in maintaining the NP and may have a regenerative potential on other cells of the NP. As the number of resident NP cells (NPCs) decreases in a degenerating disc, mesenchymal stromal (stem) cells (MSCs) may be used for cell supplementation. In this study, using cells of one species, the regenerative potential of canine NCs was assessed in long-term three-dimensional coculture with canine NPCs or MSCs. Methods Canine NCs and canine NPCs or MSCs were cocultured in alginate beads for 28 days under hypoxic and high-osmolarity conditions. Cell viability, cell morphology and DNA content, extracellular matrix production and expression of genes related to NC markers (Brachyury, KRT18) and NP matrix production (ACAN, COL2A1, COL1A1) were assessed after 1, 15 and 28 days of culture. Results NCs did not completely maintain their phenotype (morphology, matrix production, gene expression) during 28 days of culture. In cocultures of NPCs and NCs, both extracellular matrix content and anabolic gene expression remained unchanged compared with monoculture groups, whereas cocultures of MSCs and NCs showed increased glycosaminoglycan/DNA. However, the deposition of these proteoglycans was observed near the NCs and not the MSCs. Brachyury expression in the MSC and NC coculture group increased in time. The latter two findings indicate a trophic effect of MSCs on NCs rather than vice versa. Conclusions No regenerative potential of canine NCs on canine NPCs or MSCs was observed in this study. However, significant changes in NC phenotype in long-term culture may have resulted in a suboptimal regenerative potential of these NCs. In this respect, NC-conditioned medium may be better than coculture for future studies of the regenerative potential of NCs. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0569-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene T M Arkesteijn
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Lucas A Smolders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands. .,Clinic for Small Animal Surgery, Vetsuisse Faculty, Zurich University, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Sandra Spillekom
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| | - Esther Potier
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands. .,Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire (B2OA), UMR CNRS 7052, Université Denis Diderot Paris 7, Sorbonne Paris Cité, 690, Paris, France.
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands. .,Department of Orthopedics, University Medical Center Utrecht, P.O. Box 85500, HP G05.228, 3508 GA, Utrecht, The Netherlands.
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.154, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Han B, Wang HC, Li H, Tao YQ, Liang CZ, Li FC, Chen G, Chen QX. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs 2015; 199:342-52. [PMID: 25661884 DOI: 10.1159/000369452] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 12/18/2022] Open
Abstract
The microenvironment of the intervertebral disc (IVD) is characterized by matrix acidity, hypoxia, hyperosmolarity and limited nutrition, which are major obstacles to stem cell-based regeneration. Our recent work showed that nucleus pulposus mesenchymal stem cells (NPMSCs) had advantages over traditional sources of cell therapy under IVD-like hypoxic and hyperosmotic conditions. Here, we examined the viability, proliferation and matrix metabolism of NPMSCs compared with adipose tissue-derived mesenchymal stem cells (ADMSCs) under IVD-like acidic conditions in vitro. ADMSCs and NPMSCs from Sprague-Dawley rats were cultured at four different pH levels representing the standard condition (pH 7.4) and the normal, mildly degenerated and severely degenerated IVD (pH 7.1, 6.8 and 6.5, respectively). Cell viability was examined by annexin-V-fluorescein isothiocyanate/propidium iodide staining. Cell proliferation was measured using a cell counting kit cell proliferation assay. The expression of aggrecan, collagen-I, collagen-II, matrix metalloproteinase-2 (MMP-2), a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) and the tissue inhibitor of metalloproteinase-3 (TIMP-3) was measured at mRNA and protein levels by RT-PCR and Western blotting. In both cell types, acidic pH inhibited cell viability and proliferation, downregulated the expression of aggrecan, collagen-I, collagen-II and TIMP-3, and upregulated the expression of MMP-2 and ADAMTS4. Compared with ADMSCs, NPMSCs were significantly less inhibited in viability and proliferation; they expressed significantly higher levels of aggrecan and collagen-II, and lower levels of MMP-2 and ADAMTS4. Thus, an acidic environment is a major obstacle for IVD regeneration by ADMSCs or NPMSCs. NPMSCs appeared less sensitive to inhibition by acidic pH and might be promising candidates for cell-based IVD regeneration.
Collapse
Affiliation(s)
- Bin Han
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kelekis A, Filippiadis DK. Percutaneous treatment of cervical and lumbar herniated disc. Eur J Radiol 2014; 84:771-6. [PMID: 24673977 DOI: 10.1016/j.ejrad.2014.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/27/2022]
Abstract
Therapeutic armamentarium for symptomatic intervertebral disc herniation includes conservative therapy, epidural infiltrations (interlaminar or trans-foraminal), percutaneous therapeutic techniques and surgical options. Percutaneous, therapeutic techniques are imaging-guided, minimally invasive treatments for intervertebral disc herniation which can be performed as outpatient procedures. They can be classified in 4 main categories: mechanical, thermal, chemical decompression and biomaterials implantation. Strict sterility measures are a prerequisite and should include extensive local sterility and antibiotic prophylaxis. Indications include the presence of a symptomatic, small to medium sized contained intervertebral disc herniation non-responding to a 4-6 weeks course of conservative therapy. Contraindications include sequestration, infection, segmental instability (spondylolisthesis), uncorrected coagulopathy or a patient unwilling to provide informed consent. Decompression techniques are feasible and reproducible, efficient (75-94% success rate) and safe (>0.5% mean complications rate) therapies for the treatment of symptomatic intervertebral disc herniation. Percutaneous, imaging guided, intervertebral disc therapeutic techniques can be proposed either as an initial treatment or as an attractive alternative prior to surgery for the therapy of symptomatic herniation in both cervical and lumbar spine. This article will describe the mechanism of action for different therapeutic techniques applied to intervertebral discs of cervical and lumbar spine, summarize the data concerning safety and effectiveness of these treatments, and provide a rational approach for the therapy of symptomatic intervertebral disc herniation in cervical and lumbar spine.
Collapse
Affiliation(s)
- A Kelekis
- University of Athens, 2nd Radiology Dpt, University General Hospital "ATTIKON", 1 Rimini str , 12462 Haidari/Athens, Greece.
| | - D K Filippiadis
- University of Athens, 2nd Radiology Dpt, University General Hospital "ATTIKON", 1 Rimini str , 12462 Haidari/Athens, Greece.
| |
Collapse
|
14
|
Peroglio M, Eglin D, Benneker LM, Alini M, Grad S. Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells. Spine J 2013; 13:1627-39. [PMID: 23830827 DOI: 10.1016/j.spinee.2013.05.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 11/16/2012] [Accepted: 05/04/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Chaofeng W, Chao Z, Deli W, Jianhong W, Yan Z, Cheng X, Hongkui X, Qing H, Dike R. Nucleus pulposus cells expressing hBMP7 can prevent the degeneration of allogenic IVD in a canine transplantation model. J Orthop Res 2013; 31:1366-73. [PMID: 23580474 DOI: 10.1002/jor.22369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/13/2013] [Indexed: 02/04/2023]
Abstract
We have previously explored the possibilities of allogenic intervertebral disc (IVD) curing disc degeneration disease in clinical practice. The results showed that the motion and stability of the spinal unit was preserved after transplantation of allogenic IVD in human beings at 5-year follow-up. However, mild degeneration was observed in the allogenic transplanted IVD cases. In this study, we construct the biological tissue engineering IVD by injecting the nucleus pulposus cells (NPCs) expressing human bone morphogenetic protein 7 (hBMP7) into cryopreserved IVD, and transplant the biological tissue engineering IVD into a beagle dog to investigate whether NPCs expressing hBMP7 could prevent the degeneration of the transplanted allogenic IVDs. At 24 weeks after transplantation, MRI scan showed that IVD allografts injected NPCs expressing hBMP7 have a slighter signs of degeneration than IVD allografts with NPCs or without NPCs. The range of motion of left-right rotation in the group without NPCs was bigger than that of two cells injection group. PKH-26-labeled cells were identified at IVD allograft. The study demonstrated that NPCs expressing hBMP7 could survive at least 24 weeks and prevent the degeneration of the transplanted IVD. This solution might have a potential role in preventing the IVD allograft degeneration in long time follow-up.
Collapse
Affiliation(s)
- Wang Chaofeng
- Department of Orthopedic Surgery, Navy General Hospital, Fucheng Road No. 6, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen L, Huang H, Sharma HS, Zuo H, Sanberg PR. Cell transplantation as a pain therapy targets both analgesia and neural repair. Cell Transplant 2013; 22 Suppl 1:S11-9. [PMID: 23992823 DOI: 10.3727/096368913x672091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell transplantation is a potentially powerful approach for the alleviation of chronic pain. The strategy of cell transplantation for the treatment of pain is focused on cell-based analgesia and neural repair. (1) Adrenal medullary chromaffin cells and the PC12 cell line have been used to treat cancer pain and neuropathic pain in both animal models and human cases. As biological or living minipumps, these cells produce and secrete pain-reducing neuroactive substances if administered directly into the spinal subarachnoid space. (2) Cell implantation for pain neurorestorative therapy is a new concept and an emerging research field for pain control along with neural repair. Possible neurorestorative mechanisms include neuroprotective, neurotrophic, neuroreparative, neuroregenerative, neuromodulation, or neuroconstructive interventions, as well as immunomodulation and enhancing the microcirculation. These factors may ultimately restore the damaged or irritated condition of the lesioned nerves. The growing preclinical and clinical data show that neural stem/progenitor cells, olfactory ensheathing cells, mesenchymal stromal cells, and CD34(+) cells have the capacity to manage intractable pain and improve neurological functions. Cell delivery routes include local, intrathecal, or intravascular implants. Although these strategies are still in their infancy phase for pain neurorestoratology, cell-based therapies could open up new avenues for the relief of pain. In this review, these aspects are critically analyzed based on our own investigations. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
17
|
Huang YC, Leung VYL, Lu WW, Luk KDK. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J 2013; 13:352-62. [PMID: 23340343 DOI: 10.1016/j.spinee.2012.12.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 07/08/2012] [Accepted: 12/09/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recent studies have demonstrated new therapeutic strategy using transplantation of mesenchymal stem cells (MSCs), especially bone marrow-derived MSCs (BM-MSCs), to preserve intervertebral disc (IVD) structure and functions. It is important to understand whether and how the MSCs survive and thrive in the hostile microenvironment of the degenerated IVD. Therefore, this review majorly examines how resident disc cells, hypoxia, low nutrition, acidic pH, mechanical loading, endogenous proteinases, and cytokines regulate the behavior of the exogenous MSCs. PURPOSE To review and summarize the effect of the microenvironment in biological characteristics of BM-MSCs for IVD regeneration; the presence of endogenous stem cells and the state of the art in the use of BM-MSCs to regenerate the IVD in vivo were also discussed. STUDY DESIGN Literature review. METHODS MEDLINE electronic database was used to search for articles concerning stem/progenitor cell isolation from the IVD, regulation of the components of microenvironment for MSCs, and MSC-based therapy for IVD degeneration. The search was limited to English language. RESULTS Stem cells are probably resident in the disc, but exogenous stem cells, especially BM-MSCs, are currently the most popular graft cells for IVD regeneration. The endogenous disc cells and the biochemical and biophysical components in the degenerating disc present a complicated microenvironment to regulate the transplanted BM-MSCs. Although MSCs regenerate the mildly degenerative disc effectively in the experimental and clinical trials, many underlying questions are in need of further investigation. CONCLUSIONS There has been a dramatic improvement in the understanding of potential MSC-based therapy for IVD regeneration. The use of MSCs for IVD degeneration is still at the stage of preclinical and Phase 1 studies. The effects of the disc microenvironment in MSCs survival and function should be closely studied for transferring MSC transplantation from bench to bedside successfully.
Collapse
Affiliation(s)
- Yong-Can Huang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, 5/F Professor Block, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
18
|
Chan SCW, Bürki A, Bonél HM, Benneker LM, Gantenbein-Ritter B. Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. Spine J 2013; 13:273-83. [PMID: 23353003 DOI: 10.1016/j.spinee.2012.12.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 09/27/2012] [Accepted: 12/09/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Proteolytic enzyme digestion of the intervertebral disc (IVD) offers a method to simulate a condition of disc degeneration for the study of cell-scaffold constructs in the degenerated disc. PURPOSE To characterize an in vitro disc degeneration model (DDM) of different severities of glycosaminoglycans (GAG) and water loss by using papain, and to determine the initial response of the human mesenchymal stem cells (MSCs) introduced into this DDM. STUDY DESIGN Disc degeneration model of a bovine disc explant with an end plate was induced by the injection of papain at various concentrations. Labeled MSCs were later introduced in this model. METHODS Phosphate-buffered saline (PBS control) or papain in various concentrations (3, 15, 30, 60, and 150 U/mL) were injected into the bovine caudal IVD explants. Ten days after the injection, GAG content of the discs was evaluated by dimethylmethylene blue assay and cell viability was determined by live/dead staining together with confocal microscopy. Overall matrix composition was evaluated by histology, and water content was visualized by magnetic resonance imaging. Compressive and torsional stiffness of the DDM were also recorded. In the second part, MSCs were labeled with a fluorescence cell membrane tracker and injected into the nucleus of the DDM or a PBS control. Mesenchymal stem cell viability and distribution were evaluated by confocal microscopy. RESULTS A large drop of GAG and water content of the bovine disc were obtained by injecting >30 U/mL papain. Magnetic resonance imaging showed Grade II, III, and IV disc degeneration by injecting 30, 60, and 150 U/mL papain. A cavity in the center of the disc could facilitate later injection of the nucleus pulposus tissue engineering construct while retaining an intact annulus fibrosus. The remaining disc cell viability was not affected. Mesenchymal stem cells injected into the protease-treated DDM disc showed significantly higher cell viability than when injected into the PBS-injected control disc. CONCLUSIONS By varying the concentration of papain for injection, an increasing amount of GAG and water loss could be induced to simulate the different severities of disc degeneration. MSC suspension introduced into the disc has a very low short-term survival. However, it should be clear that this bovine IVD DDM does not reflect a clinical situation but offers exciting possibilities to test novel tissue engineering protocols.
Collapse
Affiliation(s)
- Samantha C W Chan
- Tissue & Organ Mechanobiology, Institute of Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Xin H, Zhang C, Wang D, Shi Z, Gu T, Wang C, Wu J, Zhang Y, He Q, Ruan D. Tissue-Engineered Allograft Intervertebral Disc Transplantation for the Treatment of Degenerative Disc Disease: Experimental Study in a Beagle Model. Tissue Eng Part A 2013; 19:143-51. [PMID: 22849557 DOI: 10.1089/ten.tea.2012.0255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hongkui Xin
- Department of of Orthopedics and Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Zhang
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Deli Wang
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Zhiyuan Shi
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Tao Gu
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Chaofeng Wang
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Jianhong Wu
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Yan Zhang
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Qing He
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| | - Dike Ruan
- Department of Orthopaedic Surgery, The Navy General Hospital, Beijing, China
| |
Collapse
|
20
|
Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine (Phila Pa 1976) 2012; 37:1865-73. [PMID: 22433498 DOI: 10.1097/brs.0b013e3182544a8a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs). OBJECTIVE To investigate in a whole organ culture whether metabolic and mechanical challenges can induce BMSC recruitment into the IVD. SUMMARY OF BACKGROUND DATA Cells from injured tissues release cytokines and mediators that enable the recruitment of progenitor cells. BMSCs have the ability to survive within the IVD. METHODS Bovine IVDs with or without endplates were cultured for 1 week under simulated physiological or degenerative conditions; disc cells were analyzed for cell viability and gene expression, whereas media was analyzed for nitric oxide production and chemotaxis. Homing of BMSCs was investigated by supplying PKH-labeled human BMSCs onto cultured IVDs (1 × 10(6) cells/disc on d 8, 10, and 12 of culture); on day 14, the number of homed BMSCs was microscopically assessed. Moreover, a comparative study was performed between transduced BMSCs (transduced with an adenovirus encoding for insulin-like growth factor 1 [IGF-1]) and nontransduced BMSCs. Disc proteoglycan synthesis rate was quantified via (35)S incorporation. The secretion of IGF-1 was evaluated by enzyme-linked immunosorbent assay on both simulated physiological and degenerative discs. RESULTS Discs cultured under degenerative conditions showed reduced cell viability, upregulation of matrix degrading enzymes, and increased nitric oxide production compared with simulated physiological discs. Greater homing occurred under degenerative compared with physiological conditions with or without endplate. Media of degenerative discs demonstrated a chemoattractive activity toward BMSCs. Finally, discs homed with IGF-1-transduced BMSCs showed increased IGF-1 secretion and significantly higher proteoglycan synthesis rate than discs supplied with nontransduced BMSCs. CONCLUSION We have demonstrated for the first time that degenerative conditions induce the release of factors promoting BMSC recruitment in an ex vivo organ culture. Moreover, IGF-1 transduction of BMSCs strongly increases the rate of proteoglycan synthesis within degenerative discs. This finding offers a new delivery system for BMSCs and treatment strategy for IVD regeneration.
Collapse
|
21
|
Abstract
STUDY DESIGN A postoperative biomechanical study. OBJECTIVE This study aimed to assess whether the mal-alignment of the intervertebral disc (IVD) allograft during transplantation would negatively affect the biomechanics of the spinal segment. SUMMARY OF BACKGROUND DATA Studies of human IVD allograft transplantation have observed remodeling of the allograft implant, suggesting that the remodeling of the allograft may be able to restore the natural mechanics of the IVD. METHODS Eighteen male goats (age: 6-12 months; weight: 25-30 kg) were randomly assigned into control (n = 5), aligned (n = 5), or malpositioned (n = 5) groups. Transplantation of a size-matched cryopreserved IVD allograft was performed in the lumbar region (L4-L5) after disc excision. In the aligned group, the IVD allografts were placed aligned and flush with the anterior vertebral margin. In the malpositioned group, the allografts were placed proud anteriorly by 25% of the anterior-posterior diameter of the allograft. The lumbar spines were harvested at 6 months after transplantation. Three-dimensional kinematic assessment of the lumbar spines was performed using an MTS testing machine and an optoelectronic camera system. The range of motion, neutral zone, and instantaneous axis of rotation were calculated. RESULTS No significant difference in range of motion was noted between the groups in flexion, axial rotation, and lateral bending. Significance was noted with extension range of motion as detected in both the aligned (17.51 ± 1.97 degrees; P = 0.019) and malpositioned groups (16.61 ± 2.35 degrees; P = 0.027) compared with the control (10.11 ± 1.03 degrees). No significant difference was detected in the neutral zone between the groups. Significant difference in the instantaneous axis of rotation orientation between the malpositioned and control groups was detected in the sagittal plane during lateral bending motion (P = 0.036). CONCLUSION Kinematic parameters in both the aligned and malpositioned allograft were similar to those of the intact spine. This suggests that precise positioning of the IVD allograft may not be an essential factor affecting the biomechanics of the spinal segment after transplantation.
Collapse
|
22
|
Chan SCW, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012:3490. [PMID: 22330901 DOI: 10.3791/3490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.
Collapse
Affiliation(s)
- Samantha C W Chan
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland
| | | |
Collapse
|
23
|
Abstract
STUDY DESIGN In vitro study of the biological response of the intervertebral disc (IVD) to cyclic torsion by using bovine caudal IVDs. OBJECTIVE To evaluate the biological response of the IVD to repetitive cyclic torsion of varying magnitudes at a physiological frequency. SUMMARY OF BACKGROUND DATA Mechanical loading is known to be a risk factor for disc degeneration (DD) but the role of torsion in DD is controversial. It has been suggested that a small magnitude of spinal rotation decreases spinal pressure, increases spinal length, and enhances nutrition exchange in the IVD. However, athletes who participate actively in sports involving torsional movement of the spine are frequently diagnosed with DD and/or disc prolapse. METHODS Bovine caudal discs with end plates were harvested and kept in custom-made chambers for in vitro culture and mechanical stimulation. Torsion was applied to the explants for 1 hour/day over four consecutive days by using a servohydraulic testing machine. The biological response was evaluated by cell viability, metabolic activity, gene expression, glycosaminoglycan content, and histological evaluation. RESULTS A significantly higher cell viability was found in the inner annulus of the 2˚ torsion group than in the static control group. A trend of decreasing metabolic activity in the nucleus pulposus with increasing torsion magnitude was observed. Apoptotic activity in the nucleus pulposus significantly increased with 5˚ torsion. No statistical significant difference in gene expression was found between the three torsion angles. No visible change in matrix organization could be observed by histological evaluation. CONCLUSION The IVD can tolerate short-term repetitive cyclic torsion, as tested in this study. A small angle of cyclic torsion can be beneficial to the IVD in organ culture, possibly by improving nutrition and waste exchange, whereas large torsion angle may cause damage to disc in the long term.
Collapse
|
24
|
Ponnappan RK, Markova DZ, Antonio PJD, Murray HB, Vaccaro AR, Shapiro IM, Anderson DG, Albert TJ, Risbud MV. An organ culture system to model early degenerative changes of the intervertebral disc. Arthritis Res Ther 2011; 13:R171. [PMID: 22018279 PMCID: PMC3308106 DOI: 10.1186/ar3494] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 09/14/2011] [Accepted: 10/21/2011] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Back pain, a significant source of morbidity in our society, is related to the degenerative changes of the intervertebral disc. At present, the treatment of disc disease consists of therapies that are aimed at symptomatic relief. This shortcoming stems in large part from our lack of understanding of the biochemical and molecular events that drive the disease process. The goal of this study is to develop a model of early disc degeneration using an organ culture. This approach is based on our previous studies that indicate that organ culture closely models molecular events that occur in vivo in an ex vivo setting. METHODS To mimic a degenerative insult, discs were cultured under low oxygen tension in the presence of TNF-α, IL-1β and serum limiting conditions. RESULTS Treatment resulted in compromised cell survival and changes in cellular morphology reminiscent of degeneration. There was strong suppression in the expression of matrix proteins including collagen types 1, 2, 6 and 9, proteoglycans, aggrecan and fibromodulin. Moreover, a strong induction in expression of catabolic matrix metalloproteinases (MMP) 3, 9 and 13 with a concomitant increase in aggrecan degradation was seen. An inductive effect on NGF expression was also noticed. Although similar, nucleus pulposus and annulus fibrosus tissues showed some differences in their response to the treatment. CONCLUSIONS Results of this study show that perturbations in microenvironmental factors result in anatomical and gene expression change within the intervertebral disc that may ultimately compromise cell function and induce pathological deficits. This system would be a valuable screening tool to investigate interventional strategies aimed at restoring disc cell function.
Collapse
Affiliation(s)
- Ravi K Ponnappan
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Leung VYL, Tam V, Chan D, Chan BP, Cheung KMC. Tissue engineering for intervertebral disk degeneration. Orthop Clin North Am 2011; 42:575-83, ix. [PMID: 21944593 DOI: 10.1016/j.ocl.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many challenges confront intervertebral disk engineering owing to complexity and the presence of extraordinary stresses. Rebuilding a disk of native function could be useful for removal of the symptoms and correction of altered spine kinematics. Improvement in understanding of disk properties and techniques for disk engineering brings promise to the fabrication of a functional motion segment for the treatment of disk degeneration. Increasing sophistication of techniques available in biomedical sciences will bring its application into clinics. This review provides an account of current progress and challenges of intervertebral disk bioengineering and discusses means to move forward and toward bedside translation.
Collapse
Affiliation(s)
- Victor Y L Leung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
26
|
Peroglio M, Grad S, Mortisen D, Sprecher CM, Illien-Jünger S, Alini M, Eglin D. Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 21 Suppl 6:S839-49. [PMID: 21874295 DOI: 10.1007/s00586-011-1976-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Thermoreversible hydrogels have potential in spine research as they provide easy injectability and mild gelling mechanism (by physical cross-link). The purpose of this study was to assess the potential of thermoreversible hyaluronan-based hydrogels (HA-pNIPAM) (pNIPAM Mn = 10, 20, 35 × 10(3) g mol(-1)) as nucleus pulposus cells (NPC) carrier. MATERIALS AND METHODS Cytocompatibility (WST-1 assay), viability (trypan blue), morphology (toluidine blue), sulphated glycosaminoglycan synthesis (DMMB assay) and gene expression profile (real-time PCR) of bovine NPC cultured in HA-pNIPAM were followed for 1 week and compared to alginate gel bead cultures. The injectability and cell survival in a whole disc organ culture model were assessed up to day 7. RESULTS All HA, HA-pNIPAM and their degradation products were cytocompatible to NPC. HA-pNIPAM hydrogels with no volume change upon gelling maintained NPC viability and characteristic rounded morphology. Glycosaminoglycan synthesis was similar in HA-pNIPAM and alginate gels. Following NPC expansion, both gels induced re-differentiation toward the NPC phenotype. Significant differences between the two gels were found for COLI, COLII, HAS1, HAS2 and ADAMTS4 but not for MMPs and TIMPs. Higher expression of hyaluronan synthases (HAS1, HAS2) and lower expression of COLI and COLII mRNA were noted in cells cultured in HA-pNIPAM (pNIPAM = 20 × 10(3)g mol(-1)). NPC suspension in HA-pNIPAM was injectable through a 22-G needle without loss of cell viability. Ex vivo, NPC viability was maintained in HA-pNIPAM for 1 week. CONCLUSION A HA-pNIPAM composition suitable for nucleus pulposus repair that provides an injectable carrier for NPC, maintains their phenotype and promotes extracellular matrix generation was identified.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Gantenbein-Ritter B, Benneker LM, Alini M, Grad S. Differential response of human bone marrow stromal cells to either TGF-β(1) or rhGDF-5. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:962-71. [PMID: 21086000 PMCID: PMC3099171 DOI: 10.1007/s00586-010-1619-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/11/2010] [Accepted: 10/31/2010] [Indexed: 12/13/2022]
Abstract
Cell therapy along with growth factor injection is currently widely investigated to restore the intervertebral disc. However, there is increasing evidence that transplanted unconditioned bone marrow-derived stromal cells (BMSCs) cannot thrive in the intervertebral disc "niche". Moreover, uncertainty exists with respect to the cell phenotype that would be suitable to inject. The intervertebral disc cell phenotype only recently has been started to be characterised using transcriptomics profiling. Recent findings suggest that cytokeratin 19 (KRT-19) could be used as a potential candidate marker for the intervertebral disc, or more specifically the nucleus pulposus cell (NPC) phenotype. We present in vitro cell culture data using alginate bead culture of primary human BMSCs exposed to the standard chondrogenic stimulus, transforming growth factor beta-1 (TGF-β), the growth and differentiation factor 5 and/or bovine NPCs to induce a potential "discogenic" pathway. Chondrogenic induction via TGF-β pathway provoked down-regulation of KRT-19 gene expression in four out of five donors after 18 days of culture, whereas KRT-19 expression remained unchanged in the "discogenic" groups. In addition, the ratio of aggrecan/collagen II gene expression showed a remarkable difference (of at least 3 magnitudes) between the chondrogenic stimulus (low ratio) and the discogenic stimulus (high ratio). Therefore, KRT-19 and aggrecan/collagen II ratio may be potential markers to distinguish chondrogenic from "discogenic" differentiation.
Collapse
Affiliation(s)
- Benjamin Gantenbein-Ritter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
- ARTORG Center, Spine Research Center, University of Bern, Bern, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
28
|
Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1796-812. [PMID: 21541667 DOI: 10.1007/s00586-011-1827-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 03/21/2011] [Accepted: 04/20/2011] [Indexed: 01/08/2023]
Abstract
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Collapse
Affiliation(s)
- Samantha C W Chan
- ARTORG Center for Biomedical Engineering, Spine Research Center, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland
| | | | | |
Collapse
|
29
|
Grad S, Alini M, Eglin D, Sakai D, Mochida J, Mahor S, Collin E, Dash B, Pandit A. Cells and Biomaterials for Intervertebral Disc Regeneration. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00250ed1v01y201006tis005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|