1
|
Kuznetsova VS, Vasilyev AV, Bukharova TB, Nedorubova IA, Goldshtein DV, Popov VK, Kulakov AA. Application of BMP-2 and its gene delivery vehicles in dentistry. Saudi Dent J 2024; 36:855-862. [PMID: 38883899 PMCID: PMC11178965 DOI: 10.1016/j.sdentj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/18/2024] Open
Abstract
The restoration of bone defects resulting from tooth loss, periodontal disease, severe trauma, tumour resection and congenital malformations is a crucial task in dentistry and maxillofacial surgery. Growth factor- and gene-activated bone graft substitutes can be used instead of traditional materials to solve these problems. New materials will overcome the low efficacy and difficulties associated with the use of traditional bone substitutes in complex situations. One of the most well-studied active components for bone graft substitutes is bone morphogenetic protein-2 (BMP-2), which has strong osteoinductive properties. The aim of this review was to examine the use of BMP-2 protein and gene therapy for bone regeneration in the oral and maxillofacial region and to discuss its future use.
Collapse
Affiliation(s)
- Valeriya Sergeevna Kuznetsova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| | - Andrey Vyacheslavovich Vasilyev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | - Vladimir Karpovich Popov
- Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
2
|
Ivanjko N, Stokovic N, Pecin M, Vnuk D, Smajlovic A, Ivkic N, Capak H, Javor A, Vrbanac Z, Maticic D, Vukicevic S. Calcium phosphate ceramics combined with rhBMP6 within autologous blood coagulum promote posterolateral lumbar fusion in sheep. Sci Rep 2023; 13:22079. [PMID: 38086987 PMCID: PMC10716416 DOI: 10.1038/s41598-023-48878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Posterolateral spinal fusion (PLF) is a procedure used for the treatment of degenerative spine disease. In this study we evaluated Osteogrow-C, a novel osteoinductive device comprised of recombinant human Bone morphogenetic protein 6 (rhBMP6) dispersed in autologous blood coagulum with synthetic ceramic particles, in the sheep PLF model. Osteogrow-C implants containing 74-420 or 1000-1700 µm ceramic particles (TCP/HA 80/20) were implanted between L4-L5 transverse processes in sheep (Ovis Aries, Merinolaandschaf breed). In the first experiment (n = 9 sheep; rhBMP6 dose 800 µg) the follow-up period was 27 weeks while in the second experiment (n = 12 sheep; rhBMP6 dose 500 µg) spinal fusion was assessed by in vivo CT after 9 weeks and at the end of the experiment after 14 (n = 6 sheep) and 40 (n = 6 sheep) weeks. Methods of evaluation included microCT, histological analyses and biomechanical testing. Osteogrow-C implants containing both 74-420 and 1000-1700 µm ceramic particles induced radiographic solid fusion 9 weeks following implantation. Ex-vivo microCT and histological analyses revealed complete osseointegration of newly formed bone with adjacent transverse processes. Biomechanical testing confirmed that fusion between transverse processes was complete and successful. Osteogrow-C implants induced spinal fusion in sheep PLF model and therefore represent a novel therapeutic solution for patients with degenerative disc disease.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Niko Ivkic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Javor
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia.
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Stokovic N, Ivanjko N, Rumenovic V, Breski A, Sampath KT, Peric M, Pecina M, Vukicevic S. Comparison of synthetic ceramic products formulated with autologous blood coagulum containing rhBMP6 for induction of bone formation. INTERNATIONAL ORTHOPAEDICS 2022; 46:2693-2704. [PMID: 35994064 DOI: 10.1007/s00264-022-05546-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Osteogrow, an osteoinductive device containing recombinant human Bone Morphogenetic Protein 6 (rhBMP6) in autologous blood coagulum, is a novel therapeutic solution for bone regeneration. This study aimed to evaluate different commercially available calcium phosphate synthetic ceramic particles as a compression-resistant matrix (CRM) added to Osteogrow implants to enhance their biomechanical properties. METHODS Osteogrow implants with the addition of Vitoss, ChronOs, BAM, and Dongbo ceramics (Osteogrow-C, where C stands for ceramics) were evaluated in the rodent subcutaneous ectopic bone formation assay. Osteogrow-C device was prepared as follows: rhBMP6 was added to blood, and blood was mixed with ceramics and left to coagulate. Osteogrow-C was implanted subcutaneously in the axillary region of Sprague-Dawley rats and the outcome was analyzed 21 days following implantation using microCT, histology, morphometric analyses, and immunohistochemistry. RESULTS Osteogrow-C implants with all tested ceramic particles induced the formation of the bone-ceramic structure containing cortical bone, the bone between the particles, and bone at the ceramic surfaces. The amount of newly formed bone was significant in all experimental groups; however, the highest bone volume was measured in Osteogrow-C implants with highly porous Vitoss ceramics. The trabecular number was highest in Osteogrow-C implants with Vitoss and ChronOs ceramics while trabeculae were thicker in implants containing BAM and Dongbo ceramics. The immunological response and inflammation were comparable among ceramic particles evaluated in this study. CONCLUSION Osteogrow-C bone regenerative device was effective with a broad range of commercially available synthetic ceramics providing a promising therapeutic solution for the regeneration of long bone fracture nonunion, large segmental defects, and spinal fusion surgeries.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Mihaela Peric
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department for Intracellular Communication, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
4
|
Long-term posterolateral spinal fusion in rabbits induced by rhBMP6 applied in autologous blood coagulum with synthetic ceramics. Sci Rep 2022; 12:11649. [PMID: 35803983 PMCID: PMC9270325 DOI: 10.1038/s41598-022-14931-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (Osteogrow) is a novel therapeutic solution for bone regeneration. This study is aimed to investigate the long-term outcome of ABGS with synthetic ceramics (Osteogrow-C) in rabbit posterolateral spinal fusion (PLF) model. Osteogrow-C implants were implanted bilaterally between rabbit lumbar transverse processes. We compared the outcome following implantation of ABGS with ceramic particles of different chemical composition (TCP and biphasic ceramics containing both TCP and HA) and size (500–1700 µm and 74–420 µm). Outcome was analyzed after 14 and 27 weeks by microCT, histology, and biomechanical analyses. Successful bilateral spinal fusion was observed in all animals at the end of observation period. Chemical composition of ceramic particles has impact on the PLF outcome via resorption of TCP ceramics, while ceramics containing HA were only partially resorbed. Moreover, persistence of ceramic particles subsequently resulted with an increased bone volume in implants with small particles containing high proportion of HA. ABGS (rhBMP6/ABC) with various synthetic ceramic particles promoted spinal fusion in rabbits. This is the first presentation of BMP-mediated ectopic bone formation in rabbit PLF model with radiological, histological, and biomechanical features over a time course of up to 27 weeks.
Collapse
|
5
|
Roh YH, Lee JC, Cho HK, Jang HD, Choi SW, Shin BJ. Comparative Study of Radiological and Clinical Outcomes in Patients Undergoing Minimally Invasive Lateral Lumbar Interbody Fusion Using Demineralized Bone Matrix Alone or with Low-Dose Escherichia coli-Derived rhBMP-2. World Neurosurg 2021; 158:e557-e565. [PMID: 34775087 DOI: 10.1016/j.wneu.2021.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To compare the results of interbody fusion in patients undergoing minimally invasive lateral lumbar interbody fusion (LLIF) using demineralized bone matrix (DBM) alone versus DBM+recombinant human bone morphogenetic protein-2 (rhBMP2). METHODS This retrospective case-controlled study was conducted in patients undergoing minimally invasive LLIF (n = 54) for lumbar interbody fusion; they were divided into 2 groups: DBM-only group and DMB+rhBMP2 group. The improvements of segmental and lumbar lordosis and restoration of disc height were measured, and the interbody fusion rates were determined using a modified Bridwell grading system. Clinical outcomes after surgery, such as visual analog scale scores of back pain and leg pain, and Oswestry disability index were compared. RESULTS There were no significant differences in disc height, lumbar and segmental lordosis, or interbody fusion rate between the 2 groups. However, the proportion of Bridwell grade 1 as complete interbody bridging was higher in the DBM+rhBMP2 group than in the DBM-only group at both 6 and 12 months (P < 0.001). Clinical parameters showed equally significant improvement during follow-up in both groups, with no significant differences between the groups. CONCLUSION In minimally invasive LLIF, adding Escherichia coli-derived rhBMP2 to DBM did not affect clinical outcomes or radiation parameters, but increased the speed of fusion and interbody bony bridging rate.
Collapse
Affiliation(s)
- Young-Ho Roh
- Department of Orthopaedic Surgery, Jeju National University Hospital, Jeju-si, Jeju-do, Republic of Korea
| | - Jae Chul Lee
- Department of Orthopaedic Surgery, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, Republic of Korea.
| | - Hyung-Ki Cho
- Department of Orthopaedic Surgery, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, Republic of Korea
| | - Hae-Dong Jang
- Department of Orthopaedic Surgery, Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Sung-Woo Choi
- Department of Orthopaedic Surgery, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, Republic of Korea
| | - Byung-Joon Shin
- Department of Orthopaedic Surgery, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies. MATERIALS 2021; 14:ma14133513. [PMID: 34202501 PMCID: PMC8269575 DOI: 10.3390/ma14133513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.
Collapse
|
7
|
Bouyer M, Garot C, Machillot P, Vollaire J, Fitzpatrick V, Morand S, Boutonnat J, Josserand V, Bettega G, Picart C. 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect. Mater Today Bio 2021; 11:100113. [PMID: 34124641 PMCID: PMC8173095 DOI: 10.1016/j.mtbio.2021.100113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic acid (PLA), coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (computed tomography scans, microcomputed tomography scans, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20- to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. Three-dimensional printed PLA scaffolds loaded with reduced doses of BMP-2 may be a safe and simple solution for large bone defects faced in the clinic.
Collapse
Affiliation(s)
- M. Bouyer
- CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France
- Université Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France
- Clinique Générale d’Annecy, 4 Chemin de la Tour la Reine, 74000, Annecy, France
| | - C. Garot
- CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France
| | - P. Machillot
- CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France
| | - J. Vollaire
- Université Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France
- INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, France
| | - V. Fitzpatrick
- CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France
| | - S. Morand
- CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France
- Service de Chirurgie Maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, 74370, Epagny Metz-Tessy, France
| | - J. Boutonnat
- Unité Médico-technique d’Histologie Cytologie Expérimentale, Faculté de Médecine, Université Joseph Fourier, 38700, La Tronche, France
- Département d’Anatomie et Cytologie Pathologique, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire de Grenoble, France
| | - V. Josserand
- Université Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France
- INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, France
| | - G. Bettega
- Université Grenoble Alpes, Institut Albert Bonniot, F-38000, Grenoble, France
- INSERM U1209, Institut Albert Bonniot, F-38000, Grenoble, France
- Service de Chirurgie Maxillo-faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, 74370, Epagny Metz-Tessy, France
- Corresponding author.
| | - C. Picart
- CEA, CNRS, Université de Grenoble Alpes, ERL5000 BRM, IRIG Institute, 17 Rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR5628, LMGP, 3 Parvis Louis Néel, F-38016, Grenoble, France
- Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France
- Corresponding author.
| |
Collapse
|
8
|
Stokovic N, Ivanjko N, Erjavec I, Milosevic M, Oppermann H, Shimp L, Sampath KT, Vukicevic S. Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat subcutaneous assay. Bone 2020; 141:115654. [PMID: 32977068 DOI: 10.1016/j.bone.2020.115654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
Bone morphogenetic proteins (BMPs) are potent osteoinductive agents for bone tissue engineering. In order to define optimal properties of a novel autologous bone graft substitute (ABGS) containing rhBMP6 within the autologous blood coagulum (ABC) and ceramic particles as a compression resistant matrix (CRM), we explored the influence of their amount, chemical composition and particle size on the quantity and quality of bone formation in the rat subcutaneous assay. Tested ceramic particles included tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphate ceramic (BCP), containing TCP and HA in 80/20 ratio of different particle sizes (small 74-420 μm, medium 500-1700 μm and large 1000-4000 μm). RhBMP6 was either mixed with ABC or lyophilized on CRM prior to use with ABC. The experiments were terminated on day 21 and implants were analysed by microCT, histology and histomorphometry. Addition of CRM to ABGS containing rhBMP6 in ABC significantly increased the amount of newly formed bone and the optimal CRM/ABC ratio was found to be around 100 mg/500 μL. MicroCT analyses revealed that all tested ABGS formulations induced an extensive new bone formation and there were no differences between the two methods of rhBMP6 application as determined by the bone volume. However, the particle size played a significant role in the quantity and quality of newly formed bone. ABGS containing small particles induced new bone forming a dense trabecular network, cortical bone at the rim, bone and bone marrow in apposition to and in between ceramic particles. ABGS containing medium and large particles also resulted in new bone on the surface of particles as well as inside the pores. Histomorphometric analysis revealed that the ceramics particle size correlated with the quality of trabecular pattern of newly formed bone, bone/bone marrow ratio as observed in apposition and between particles, and the ratio between the cortical and trabecular bone. By employing rat subcutaneous implant assay, we showed for the first time that the size of synthetic ceramics particles affected the osteogenesis as defined by both the quantity and quality of ectopic bone.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Milan Milosevic
- Department for Environmental Health, Occupational and Sports Medicine, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia.
| |
Collapse
|
9
|
Štoković N, Ivanjko N, Pećin M, Erjavec I, Karlović S, Smajlović A, Capak H, Milošević M, Bubić Špoljar J, Vnuk D, Matičić D, Oppermann H, Sampath TK, Vukičević S. Evaluation of synthetic ceramics as compression resistant matrix to promote osteogenesis of autologous blood coagulum containing recombinant human bone morphogenetic protein 6 in rabbit posterolateral lumbar fusion model. Bone 2020; 140:115544. [PMID: 32730919 DOI: 10.1016/j.bone.2020.115544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
Posterolateral lumbar fusion (PLF) is a commonly performed surgical procedure for the treatment of pathological conditions of the lumbosacral spine. In the present study, we evaluated an autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) and synthetic ceramics used as compression resistant matrix (CRM) in the rabbit PLF model. In the pilot PLF rabbit experiment, we tested four different CRMs (BCP 500-1700 μm, BCP 1700-2500 μm and two different TCP in the form of slabs) which were selected based on achieving uniform ABC distribution. Next, ABGS implants composed of 2.5 mL ABC with 0.5 g ceramic particles (TCP or BCP (TCP/HA 80/20) of particle size 500-1700 μm) and 125 μg rhBMP6 (added to blood or lyophilized on ceramics) were placed bilaterally between transverse processes of the lumbar vertebrae (L5-L6) following exposition and decortication in 12 New Zealand White Rabbits observed for 7 weeks following surgery. Spinal fusion outcome was analysed by μCT, palpatory segmental mobility testing and selected specimens were either tested biomechanically (three-point bending test) and/or processed histologically. The total fusion success rate was 90.9% by both μCT analyses and by palpatory segmental mobility testing. The volume of newly formed bone between experimental groups with TCP or BCP ceramics and the different method of rhBMP6 application was comparable. The newly formed bone and ceramic particles integrated with the transverse processes on histological sections resulting in superior biomechanical properties. The results were retrospectively found superior to allograft devitalized mineralized bone as a CRM as reported previously in rabbit PLF. Overall, this novel ABGS containing rhBMP6, ABC and the specific 500-1700 μm synthetic ceramic particles supported new bone formation for the first time and successfully promoted posterolateral lumbar fusion in rabbits.
Collapse
Affiliation(s)
- Nikola Štoković
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marko Pećin
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Sven Karlović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlović
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Milan Milošević
- Department for Environmental Health, Occupational and Sports Medicine, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jadranka Bubić Špoljar
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Dražen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dražen Matičić
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
10
|
Stokovic N, Ivanjko N, Milesevic M, Matic Jelic I, Bakic K, Rumenovic V, Oppermann H, Shimp L, Sampath TK, Pecina M, Vukicevic S. Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats. INTERNATIONAL ORTHOPAEDICS 2020; 45:1097-1107. [PMID: 33052447 DOI: 10.1007/s00264-020-04847-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats. METHODS ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test. RESULTS MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM. CONCLUSION We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Ivona Matic Jelic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Kristian Bakic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | | | | | | | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia. .,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
11
|
van Dijk LA, Barbieri D, Barrère‐de Groot F, Yuan H, Oliver R, Christou C, Walsh WR, de Bruijn JD. Efficacy of a synthetic calcium phosphate with submicron surface topography as autograft extender in lapine posterolateral spinal fusion. J Biomed Mater Res B Appl Biomater 2019; 107:2080-2090. [PMID: 30614621 PMCID: PMC6690075 DOI: 10.1002/jbm.b.34301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/18/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022]
Abstract
Posterolateral spinal fusion (PLF) is a common procedure in orthopedic surgery that is performed to fuse adjacent vertebrae to reduce symptoms related to spinal conditions. In the current study, a novel synthetic calcium phosphate with submicron surface topography was evaluated as an autograft extender in a validated rabbit model of PLF. Fifty-nine skeletally mature New Zealand white rabbits were divided into three groups and underwent single-level intertransverse process PLF at L4-5 using (1) autologous bone graft (ABG) alone or in a 1:1 combination with (2) calcium phosphate granules (ABG/BCPgranules ), or (3) granules embedded in a fast-resorbing polymeric carrier (ABG/BCPputty ). After 6, 9, and 12 weeks, animals were sacrificed and spinal fusion was assessed by manual palpation, Radiographs, micro-CT, mechanical testing (12 weeks only), histology, and histomorphometry. Based on all endpoints, all groups showed a gradual progression in bone formation and maturation during time, leading to solid fusion masses between the transverse processes after 12 weeks. Fusion assessments by manual palpation, radiography and histology were consistent and demonstrated equivalent fusion rates between groups, with high bilateral fusion rates after 12 weeks. Mechanical tests after 12 weeks indicated substantially lower range of motion for all groups, compared to non-operated controls. By histology and histomorphometry, the gradual formation and maturation of bone in the fusion mass was confirmed for each graft type. With these results, we describe the equivalent performance between autograft and a novel calcium phosphate material as an autograft extender in a rabbit model of PLF using an extensive range of evaluation techniques. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2080-2090, 2019.
Collapse
Affiliation(s)
- Lukas A. van Dijk
- Kuros Biosciences BVBilthoventhe Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center UtrechtUtrechtthe Netherlands
| | | | | | - Huipin Yuan
- Kuros Biosciences BVBilthoventhe Netherlands
- Complex Tissue Regeneration, MERLN Institute, Maastricht UniversityMaastrichtthe Netherlands
| | - Rema Oliver
- Surgical and Orthopedic Research LaboratoriesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chris Christou
- Surgical and Orthopedic Research LaboratoriesUniversity of New South WalesSydneyNew South WalesAustralia
| | - William R. Walsh
- Surgical and Orthopedic Research LaboratoriesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Joost D. de Bruijn
- Kuros Biosciences BVBilthoventhe Netherlands
- School of Engineering and Materials Science, Queen Mary University of LondonLondonUK
| |
Collapse
|
12
|
Lu Y, Li M, Long Z, Di Yang, Guo S, Li J, Liu D, Gao P, Chen G, Lu X, Lu J, Wang Z. Collagen/
β
-TCP composite as a bone-graft substitute for posterior spinal fusion in rabbit model: a comparison study. Biomed Mater 2019; 14:045009. [DOI: 10.1088/1748-605x/ab1caf] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
van Dijk LA, Duan R, Luo X, Barbieri D, Pelletier M, Christou C, Rosenberg AJWP, Yuan H, Barrèrre‐de Groot F, Walsh WR, de Bruijn JD. Biphasic calcium phosphate with submicron surface topography in an Ovine model of instrumented posterolateral spinal fusion. JOR Spine 2018; 1:e1039. [PMID: 31463454 PMCID: PMC6686792 DOI: 10.1002/jsp2.1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
As spinal fusions require large volumes of bone graft, different bone graft substitutes are being investigated as alternatives. A subclass of calcium phosphate materials with submicron surface topography has been shown to be a highly effective bone graft substitute. In this work, a commercially available biphasic calcium phosphate (BCP) with submicron surface topography (MagnetOs; Kuros Biosciences BV) was evaluated in an Ovine model of instrumented posterolateral fusion. The material was implanted stand-alone, either as granules (BCPgranules) or as granules embedded within a fast-resorbing polymeric carrier (BCPputty) and compared to autograft bone (AG). Twenty-five adult, female Merino sheep underwent posterolateral fusion at L2-3 and L4-5 levels with instrumentation. After 6, 12, and 26 weeks, outcomes were evaluated by manual palpation, range of motion (ROM) testing, micro-computed tomography, histology and histomorphometry. Fusion assessment by manual palpation 12 weeks after implantation revealed 100% fusion rates in all treatment groups. The three treatment groups showed a significant decrease in lateral bending at the fusion levels at 12 weeks (P < 0.05) and 26 weeks (P < 0.001) compared to the 6 week time-point. Flexion-extension and axial rotation were also reduced over time, but statistical significance was only reached in flexion-extension for AG and BCPputty between the 6 and 26 week time-points (P < 0.05). No significant differences in ROM were observed between the treatment groups at any of the time-points investigated. Histological assessment at 12 weeks showed fusion rates of 75%, 92%, and 83% for AG, BCPgranules and BCPputty, respectively. The fusion rates were further increased 26 weeks postimplantation. Similar trends of bone growth were observed by histomorphometry. The fusion mass consisted of at least 55% bone for all treatment groups 26 weeks after implantation. These results suggest that this BCP with submicron surface topography, in granules or putty form, is a promising alternative to autograft for spinal fusion.
Collapse
Affiliation(s)
- Lukas A. van Dijk
- Kuros Biosciences BVBilthovenThe Netherlands
- Department of Oral and Maxillofacial SurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rongquan Duan
- Kuros Biosciences BVBilthovenThe Netherlands
- Biomaterial Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Xiaoman Luo
- Kuros Biosciences BVBilthovenThe Netherlands
| | | | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chris Christou
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Huipin Yuan
- Kuros Biosciences BVBilthovenThe Netherlands
- MERLN Institute for Technology‐inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | | | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Joost D. de Bruijn
- Kuros Biosciences BVBilthovenThe Netherlands
- School of Materials Science and EngineeringQueen Mary University of LondonLondonUK
| |
Collapse
|
14
|
Kaito T, Morimoto T, Mori Y, Kanayama S, Makino T, Takenaka S, Sakai Y, Otsuru S, Yoshioka Y, Yoshikawa H. BMP-2/7 heterodimer strongly induces bone regeneration in the absence of increased soft tissue inflammation. Spine J 2018; 18:139-146. [PMID: 28735764 DOI: 10.1016/j.spinee.2017.07.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/25/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bone morphogenetic protein (BMP)-2/7 heterodimer is a stronger inducer of bone regeneration than individual homodimers. However, clinical application of its potent bone induction ability may be hampered if its use is accompanied by excessive inflammatory reactions. PURPOSE We sought to quantitatively evaluate bone induction and inflammatory reactions by BMP heterodimer and corresponding BMP homodimers using ultra-high resolution magnetic resonance imaging (MRI) and micro-computed tomography. STUDY DESIGN An experimental animal study was carried out. METHODS A total of 32 absorbable collagen sponge implantations into dorsal muscle were performed in rats of four different groups (control group, 0 µg BMP; recombinant human (rh)BMP-7 group, 3 µg rhBMP-7; rhBMP-2 group, 3 µg rhBMP-2; rhBMP-2/7 group, 3 µg rhBMP-2/7). Inflammatory reactions were evaluated by 11.7-T MRI (axial T2-weighted imaging using rapid acquisition with relaxation enhancement) at postoperative days 2 and 7. Bone volumes (BVs) of the induced ectopic bone were quantified at postoperative day 7. In addition, immunohistochemical staining for interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was performed in samples obtained on postoperative day 2. Bone formation (BF)-to-inflammation (IM) ratios were calculated by dividing BVs by values of inflamed areas. RESULTS At postoperative day 2, the mean volume of T2 high area on MRI scans in BMP-2 group was significantly larger than that in control group. In contrast, the BMP-2/7 had no difference in the mean volume of T2 high area compared with the control group; however, there was no difference between the BMP-2/7 compared with BMP-2 group. At postoperative day 7, the volumes of T2 high area were not different between the groups. Mean BV of the newly formed bone on postoperative day 7 was significantly greater in BMP-2/7 group than in BMP-7 groups. No new bone formation was observed in control group. BF-to-IM ratio in BMP-2/7 group was significantly higher than those in BMP-2 and BMP-7 homodimer groups. Immunohistochemistry experiments did not reveal differences in expression levels of IL-1β, IL-6, or TNF-α in samples from BMP-2, BMP-7, and BMP-2/7 groups. CONCLUSIONS This study demonstrated that BMP-2/7 heterodimer has stronger bone induction ability without accompanying increased inflammatory reactions (the increased BF-to-IM ratio) than those observed by BMP-2 or BMP-7 homodimers. These results suggest that BMP-2/7 heterodimer can be an alternative to BMP-2 and BMP-7 homodimers in clinical applications, although further translational studies, including whether lower doses of BMP heterodimer may produce similar bone formation compared with the BMP homodimers but produce a reduced inflammatory response, are required.
Collapse
Affiliation(s)
- Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Tokimitsu Morimoto
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yuki Mori
- Biofunctional imaging, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sadaaki Kanayama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shota Takenaka
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yusuke Sakai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Yoshichika Yoshioka
- Biofunctional imaging, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
15
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
16
|
Gunnella F, Kunisch E, Bungartz M, Maenz S, Horbert V, Xin L, Mika J, Borowski J, Bischoff S, Schubert H, Hortschansky P, Sachse A, Illerhaus B, Günster J, Bossert J, Jandt KD, Plöger F, Kinne RW, Brinkmann O. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J 2017; 17:1699-1711. [PMID: 28619686 DOI: 10.1016/j.spinee.2017.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/23/2017] [Accepted: 06/08/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bioresorbable calcium phosphate cement (CPC) may be suitable for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures. However, additional targeted delivery of osteoinductive bone morphogenetic proteins (BMPs) in the CPC may be required to counteract the augmented local bone catabolism and support complete bone regeneration. PURPOSE This study aimed at testing an injectable, poly (l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing low-dose bone morphogenetic protein BMP-2 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING This is a prospective experimental animal study. METHODS Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of BMP-2 (L5; CPC+fibers+BMP-2; 1, 5, 100, and 500 µg BMP-2; n=5 or 6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BMP-2) were analyzed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (assessed by micro-computed tomography [micro-CT] and histomorphometry), trabecular thickness, and trabecular number; (3) bone formation, that is, osteoid volume/bone volume, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS Compared with untouched controls (L1), CPC+fibers (L4) and/or CPC+fibers+BMP-2 (L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BMP-2, additional significant effects of BMP-2 were demonstrated for bone structure (bone volume/total volume, trabecular thickness, trabecular number) and formation (osteoid surface/bone surface and mineralizing surface/bone surface), as well as for the compressive strength. The BMP-2 effects on bone formation at 3 and 9 months were dose-dependent, with 5-100 µg as the optimal dosage. CONCLUSIONS BMP-2 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as ≤100 µg BMP-2 was sufficient to augment middle to long-term bone formation. The novel CPC+BMP-2 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty/kyphoplasty.
Collapse
Affiliation(s)
- Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Matthias Bungartz
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany; Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Long Xin
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Joerg Mika
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Juliane Borowski
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Sabine Bischoff
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Straße 23, 07743 Jena, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Straße 23, 07743 Jena, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Andre Sachse
- Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Bernhard Illerhaus
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Straße 23, 07743 Jena, Germany
| | - Jens Günster
- BAM Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 44-46, 12203 Berlin; Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, Neugasse 23, 07743 Jena, Germany
| | - Frank Plöger
- BIOPHARM GmbH, Handelsstrasse 15, 69214 Eppelheim, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Olaf Brinkmann
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany; Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| |
Collapse
|
17
|
Begam H, Nandi SK, Kundu B, Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:856-869. [PMID: 27770964 DOI: 10.1016/j.msec.2016.09.074] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery.
Collapse
Affiliation(s)
- Howa Begam
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery, Radiology West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India.
| | - Abhijit Chanda
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
18
|
Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater 2016; 105:904-925. [PMID: 26728994 DOI: 10.1002/jbm.b.33599] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) has unique bone regeneration property. The powerful osteoinductive nature makes it considered as second line of therapy in nonunion bone defect. A large number of carriers and delivery systems made up of different materials have been investigated for controlled and sustained release of BMP-2. The delivery systems are in the form of hydrogel, microsphere, nanoparticles, and fibers. The carriers used for the delivery are made up of metals, ceramics, polymers, and composites. Implantation of these protein-loaded carrier leads to cell adhesion, degradation which eventually releases the drug/protein at site specific. But, problems like ectopic growth, lesser protein delivery, inactivation of the protein are reported in the available carrier systems. Therefore, it is need of an hour to modify the available carrier systems as well as explore other biomaterials with desired properties. In this review, all the reported carrier systems made of metals, ceramics, polymers, composites are evaluated in terms of their processing conditions, loading capacity and release pattern of BMP-2. Along with these biomaterials, the attempts of protein modification by adding some functional group to BMP-2 or extracting functional peptides from the protein to achieve the desired effect, is also evaluated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 904-925, 2017.
Collapse
Affiliation(s)
- Vishal Agrawal
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| |
Collapse
|
19
|
Haversath M, Hülsen T, Böge C, Tassemeier T, Landgraeber S, Herten M, Warwas S, Krauspe R, Jäger M. Osteogenic differentiation and proliferation of bone marrow-derived mesenchymal stromal cells on PDLLA + BMP-2-coated titanium alloy surfaces. J Biomed Mater Res A 2015; 104:145-54. [PMID: 26268470 DOI: 10.1002/jbm.a.35550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
RhBMP-2 is clinically applied to enhance bone healing and used in combination with titanium fixation implants. The purpose of this in vitro study was to compare the osteogenic differentiation and proliferation of hMSC on native polished versus sandblasted titanium surfaces (TS) and to test their behavior on pure poly-D,L-lactide (PDLLA) coated as well as PDLLA + rhBMP-2 coated TS. Furthermore, the release kinetics of PDLLA + rhBMP-2-coated TS was investigated. Human bone marrow cells were obtained from three different donors (A: male, 16 yrs; B: male, 27 yrs, C: male, 49 yrs) followed by density gradient centrifugation and flow cytometry with defined antigens. The cells were seeded on native polished and sandblasted TS, PDLLA-coated TS and PDLLA + rhBMP-2-coated TS. Osteogenic differentiation (ALP specific activity via ALP and BCA assay) and proliferation (LDH cytotoxicity assay) was examined on day 7 and 14 and release kinetics of rhBMP-2 was investigated on day 3, 7, 10, and 14. We found significant higher ALP specific activity and LDH activity on native polished compared to native sandblasted surfaces. PDLLA led to decreased ALP specific and LDH activity on both surface finishes. Additional rhBMP-2 slightly diminished this effect. RhBMP-2-release from coated TS decreased nearly exponentially with highest concentrations at the beginning of the cultivation period. The results of this in vitro study suggest that native TS stimulate hMSC significantly stronger toward osteogenic differentiation and proliferation than rhBMP-2 + PDLLA-layered TS in the first 14 days of cultivation. The PDLLA-layer seems to inhibit local hMSC differentiation and proliferation.
Collapse
Affiliation(s)
- Marcel Haversath
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Tobias Hülsen
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Carolin Böge
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Tjark Tassemeier
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Stefan Landgraeber
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Monika Herten
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Warwas
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Rüdiger Krauspe
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| |
Collapse
|