1
|
Banche-Niclot F, Corvaglia I, Cavalera C, Boggio E, Gigliotti CL, Dianzani U, Tzagiollari A, Dunne N, Manca A, Fiorilli S, Vitale-Brovarone C. Optimization of an Injectable, Resorbable, Bioactive Cement Able to Release the Anti-Osteoclastogenic Biomolecule ICOS-Fc for the Treatment of Osteoporotic Vertebral Compression Fractures. Biomolecules 2023; 13:biom13010094. [PMID: 36671479 PMCID: PMC9855932 DOI: 10.3390/biom13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.
Collapse
Affiliation(s)
- Federica Banche-Niclot
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Ilaria Corvaglia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Caterina Cavalera
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Elena Boggio
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Antzela Tzagiollari
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Antonio Manca
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Torino, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
- Correspondence:
| |
Collapse
|
2
|
Freischmidt H, Armbruster J, Rothhaas C, Titze N, Guehring T, Nurjadi D, Kretzer JP, Schmidmaier G, Grützner PA, Helbig L. Efficacy of an Antibiotic Loaded Ceramic-Based Bone Graft Substitute for the Treatment of Infected Non-Unions. Biomedicines 2022; 10:biomedicines10102513. [PMID: 36289775 PMCID: PMC9599187 DOI: 10.3390/biomedicines10102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment of non-unions is often complicated by segmental bone defects and bacterial colonization. Because of the limited availability of autologous bone grafts, tissue engineering focuses on antibiotic-loaded bone graft substitutes. HACaS+G is a resorbable calcium sulphate-hydroxyapatite loaded with gentamicin. The osteoinductive, osteoconductive, and anti-infective effect of HACaS+G has already been demonstrated in clinical studies on patients with chronic osteomyelitis. However, especially for the treatment of infected non-unions with segmental bone defects by HACaS+G, reliable clinical testing is difficult and sufficient experimental data are lacking. We used an already established sequential animal model in infected and non-infected rat femora to investigate the osteoinductive, osteoconductive, and anti-infective efficacy of HACaS+G for the treatment of infected non-unions. In biomechanical testing, bone consolidation could not be observed under infected and non-infected conditions. Only a prophylactic effect against infections, but no eradication, could be verified in the microbiological analysis. Using µ-CT scans and histology, osteoinduction was detected in both the infected and non-infected bone, whereas osteoconduction occurred only in the non-infected setting. Our data showed that HACaS+G is osteoinductive, but does not have added benefits in infected non-unions in terms of osteoconduction and mechanical bone stability, especially in those with segmental bone defects.
Collapse
Affiliation(s)
- Holger Freischmidt
- Department of Trauma and Orthopedic Surgery, BG Klinikum Ludwigshafen at Heidelberg University Hospital, 67071 Ludwigshafen am Rhein, Germany
- Correspondence: (H.F.); (L.H.)
| | - Jonas Armbruster
- Department of Trauma and Orthopedic Surgery, BG Klinikum Ludwigshafen at Heidelberg University Hospital, 67071 Ludwigshafen am Rhein, Germany
| | - Catharina Rothhaas
- Department of Trauma and Orthopedic Surgery, BG Klinikum Ludwigshafen at Heidelberg University Hospital, 67071 Ludwigshafen am Rhein, Germany
| | - Nadine Titze
- Department of Trauma and Orthopedic Surgery, BG Klinikum Ludwigshafen at Heidelberg University Hospital, 67071 Ludwigshafen am Rhein, Germany
| | - Thorsten Guehring
- Trauma Centre, Hospital Paulinenhilfe Stuttgart at Tübingen University Hospital, Rosenbergstr. 38, 70176 Stuttgart, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jan Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Clinic for Orthopedics and Trauma Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Paul Alfred Grützner
- Department of Trauma and Orthopedic Surgery, BG Klinikum Ludwigshafen at Heidelberg University Hospital, 67071 Ludwigshafen am Rhein, Germany
| | - Lars Helbig
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
- Correspondence: (H.F.); (L.H.)
| |
Collapse
|
3
|
[Augmentation in surgical sepsis : Chances and limitations in the treatment of osteitis with calcium hydroxyapatite containing antibiotics]. Unfallchirurg 2022; 125:452-459. [PMID: 35546643 DOI: 10.1007/s00113-022-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The surgical treatment of osteitis or fracture-related infections (FRI) is often associated with large bone defects. The treatment of these defects remains a major challenge in trauma surgery. Within the concept of tissue engineering, the development of various hybrid bone graft substitutes, such as calcium hydroxyapatite with added antibiotics, is continuously progressing. OBJECTIVE Chances and limitations in the treatment of osteitis with calcium hydroxyapatite containing antibiotics. MATERIAL AND METHODS Overview of the results of a 2-stage (infection) pseudarthrosis model on rat femurs treated with Cerament® G (Bonesupport, Lund, Schweden). Evaluation of the clinical experiences based on three case examples of osteitis treated with calcium hydroxyapatite containing antibiotics (Cerament® G or Cerament® V). RESULTS After establishment of a 2‑stage pseudarthrosis model on the rat femur, the osteoconductive and osteoinductive potential of calcium hydroxyapatite containing antibiotics could be confirmed. In the clinical application, the use of Cerament® G seems to lead to a more favorable outcome in small cavitary defects. The recurrence rates are higher than previously described, especially for larger segmental defects. CONCLUSION Taking the clinical and experimental results into consideration, a stricter evaluation of the indications for the use of Cerament® G is necessary to achieve the best possible outcome for patients.
Collapse
|
4
|
de Lacerda Schickert S, van den Beucken JJ, Leeuwenburgh SC, Jansen JA. Pre-Clinical Evaluation of Biological Bone Substitute Materials for Application in Highly Loaded Skeletal Sites. Biomolecules 2020; 10:E883. [PMID: 32526829 PMCID: PMC7356650 DOI: 10.3390/biom10060883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
The development of bone substitute materials (BSMs) intended for load-bearing bone defects is highly complicated, as biological and mechanical requirements are often contradictory. In recent years, biological BSMs have been developed which allow for a more efficient integration of the material with the surrounding osseous environment and, hence, a higher mechanical stability of the treated defect. However, while these materials are promising, they are still far from ideal. Consequently, extensive preclinical experimentation is still required. The current review provides a comprehensive overview of biomechanical considerations relevant for the design of biological BSMs. Further, the preclinical evaluation of biological BSMs intended for application in highly loaded skeletal sites is discussed. The selected animal models and implantation site should mimic the pathophysiology and biomechanical loading patterns of human bone as closely as possible. In general, sheep are among the most frequently selected animal models for the evaluation of biomaterials intended for highly loaded skeletal sites. Regarding the anatomical sites, segmental bone defects created in the limbs and spinal column are suggested as the most suitable. Furthermore, the outcome measurements used to assess biological BSMs for regeneration of defects in heavily loaded bone should be relevant and straightforward. The quantitative evaluation of bone defect healing through ex vivo biomechanical tests is a valuable addition to conventional in vivo tests, as it determines the functional efficacy of BSM-induced bone healing. Finally, we conclude that further standardization of preclinical studies is essential for reliable evaluation of biological BSMs in highly loaded skeletal sites.
Collapse
Affiliation(s)
| | | | | | - John A. Jansen
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands; (S.d.L.S.); (J.J.J.P.v.d.B.); (S.C.G.L.)
| |
Collapse
|
5
|
Zhu J, Yang S, Cai K, Wang S, Qiu Z, Huang J, Jiang G, Wang X, Fang X. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020; 10:6544-6560. [PMID: 32483469 PMCID: PMC7255031 DOI: 10.7150/thno.44428] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Poly (methyl methacrylate) (PMMA) bone cement is one of the most commonly used biomaterials for augmenting/stabilizing osteoporosis-induced vertebral compression fractures (OVCFs), such as percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP). However, its clinical applications are limited by its poor performance in high compressive modulus and weak bonding to bone. To address these issues, a bioactive composite bone cement was developed for the treatment of osteoporotic vertebral compression fractures, in which mineralized collagen (MC) was incorporated into the PMMA bone cement (MC-PMMA). Methods: The in vitro properties of PMMA and MC-PMMA composite bone cement were determined, including setting time, compressive modulus, adherence, proliferation, and osteogenic differentiation of rat bone mesenchymal stem cells. The in vivo properties of both cements were evaluated in an animal study (36 osteoporotic New Zealand female rabbits divided equally between the two bone cement groups; PVP at L5) and a small-scale and short-term clinical study (12 patients in each of the two bone cement groups; follow-up: 2 years). Results: In terms of value for PMMA bone cement, the handling properties of MC-PMMA bone cement were not significantly different. However, both compressive strength and compressive modulus were found to be significantly lower. In the rabbit model study, at 8 and 12 weeks post-surgery, bone regeneration was more significant in MC-PMMA bone cement (cortical bone thickness, osteoblast area, new bone area, and bone ingrowth %; each significantly higher). In the clinical study, at a follow-up of 2 years, both the Visual Analogue Score and Oswestry Disability Index were significantly reduced when MC-PMMA cement was used. Conclusions: MC-PMMA bone cement demonstrated good adaptive mechanical properties and biocompatibility and may be a promising alternative to commercial PMMA bone cements for the treatment of osteoporotic vertebral fractures in clinical settings. While the present results for MC-PMMA bone cement are encouraging, further study of this cement is needed to explore its viability as an ideal alternative for use in PVP and BKP.
Collapse
Affiliation(s)
- Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kaiwen Cai
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiye Qiu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junfei Huang
- Shimadzu (China) Co., Ltd. Shenzhen Branch, Shenzhen 518042, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| |
Collapse
|
6
|
Baino F, Fiorilli S, Vitale-Brovarone C. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review. Bioengineering (Basel) 2017; 4:E15. [PMID: 28952496 PMCID: PMC5590434 DOI: 10.3390/bioengineering4010015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 12/28/2022] Open
Abstract
Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic-organic hybrid sol-gel biomaterials.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|