1
|
Laynes RA, Kleck CJ. Patient-specific implants and spinal alignment outcomes. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 20:100559. [PMID: 39524185 PMCID: PMC11550775 DOI: 10.1016/j.xnsj.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 11/16/2024]
Abstract
Background Patient specific (PS) technology has become popular in the field of spine surgery, as it gives surgeons control over the manufacturing of implants based on a patient's anatomy. Patient specific surgical guides, preoperative planning software, and patient specific implants - such as rods and cages, have demonstrated promising results in the literature for helping surgeons achieve spinal alignment goals. Methods A review of the literature regarding PS technology in spine surgery for the correction of spinal deformity was performed and is compiled here. Results A description of the PS tools currently used for deformity correction and treatment of degenerative spine pathology with example cases are included in this manuscript. Conclusions The use of PS technology in spine surgery is an important development in the field that should continue to be studied.
Collapse
Affiliation(s)
- Renzo A. Laynes
- Department of Orthopaedic Surgery, University of Colorado School of Medicine, 12631 E. 17th Avenue, Academic Office Building 1–Rm 4503; B202, Aurora, CO, United States
| | - Christopher J. Kleck
- University of Colorado Hospital, Spine Center, 12605 E. 16th Avenue, Anschutz Inpatient Pavilion-1st floor, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Lin T, Xie Q, Peng T, Zhao X, Chen D. The role of robotic surgery in neurological cases: A systematic review on brain and spine applications. Heliyon 2023; 9:e22523. [PMID: 38046149 PMCID: PMC10686875 DOI: 10.1016/j.heliyon.2023.e22523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
The application of robotic surgery technologies in neurological surgeries resulted in some advantages compared to traditional surgeries, including higher accuracy and dexterity enhancement. Its success in various surgical fields, especially in urology, cardiology, and gynecology surgeries was reported in previous studies, and similar advantages in neurological surgeries are expected. Surgeries in the central nervous system with the pathology of millimeters through small working channels around vital tissue need especially high precision. Applying robotic surgery is therefore an interesting dilemma for these situations. This article reviews various studies published on the application of brain and spine robotic surgery and discusses the current application of robotic technology in neurological cases.
Collapse
Affiliation(s)
- Tong Lin
- Neurosurgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, 535000, Nanning, China
| | - Qinghai Xie
- Neurosurgery, Qinzhou First People's Hospital, Qinzhou City, 535000, China
| | - Tao Peng
- Neurosurgery, Qinzhou First People's Hospital, Qinzhou City, 535000, China
| | - Xianxiao Zhao
- Neurosurgery, Qinzhou First People's Hospital, Qinzhou City, 535000, China
| | - Dongliang Chen
- Neurosurgery, Qinzhou First People's Hospital, Qinzhou City, 535000, China
| |
Collapse
|
3
|
Hu M, Zeng W, Zhang J, Feng Y, Ma L, Huang F, Cai Q. Fixators dynamization for delayed union and non-union of femur and tibial fractures: a review of techniques, timing and influence factors. J Orthop Surg Res 2023; 18:577. [PMID: 37550732 PMCID: PMC10405409 DOI: 10.1186/s13018-023-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The optimal balance between mechanical environment and biological factors is crucial for successful bone healing, as they synergistically affect bone development. Any imbalance between these factors can lead to impaired bone healing, resulting in delayed union or non-union. To address this bone healing disorder, clinicians have adopted a technique known as "dynamization" which involves modifying the stiffness properties of the fixator. This technique facilitates the establishment of a favorable mechanical and biological environment by changing a rigid fixator to a more flexible one that promotes bone healing. However, the dynamization of fixators is selective for certain types of non-union and can result in complications or failure to heal if applied to inappropriate non-unions. This review aims to summarize the indications for dynamization, as well as introduce a novel dynamic locking plate and various techniques for dynamization of fixators (intramedullary nails, steel plates, external fixators) in femur and tibial fractures. Additionally, Factors associated with the effectiveness of dynamization are explored in response to the variation in dynamization success rates seen in clinical studies.
Collapse
Affiliation(s)
- Minhua Hu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxing Zeng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingtao Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanlan Feng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luyao Ma
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qunbin Cai
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Su YF, Tsai TH, Kuo KL, Wu CH, Tsai CY, Lu YM, Hwang SL, Lin PC, Lieu AS, Lin CL, Chang CH. Potential Roles of Teamwork and Unmet Needs on Surgical Learning Curves of Spinal Robotic Screw Placement. J Multidiscip Healthc 2022; 15:1971-1978. [PMID: 36105672 PMCID: PMC9464635 DOI: 10.2147/jmdh.s380707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background The aim of this study was to investigate the learning curve of robotic spine surgery quantitatively with the well-described power law of practice. Methods Kaohsiung Medical University Hospital set up a robotic spine surgery team by the neurosurgery department in 2013 and the orthopedic department joined the well-established team in 2014. A total of consecutive 150 cases received robotic assisted spinal surgery. The 150 cases, with 841 transpedicular screws were enrolled into 3 groups: the first 50 cases performed by neurosurgeons, the first 50 cases by orthopedic surgeons, and 50 cases by neurosurgeons after the orthopedic surgeons joined the team. The time per screw and accuracy by each group and individual surgeon were analyzed. Results The time per screw for each group was 9.56 ± 4.19, 7.29 ± 3.64, and 8.74 ± 5.77 minutes, respectively, with p-value 0.0017. The accuracy was 99.6% (253/254), 99.5% (361/363), and 99.1% (222/224), respectively, with p-value 0.77. Though the first group took time significantly more on per screw placement but without significance on the nonlinear parallelism F-test. Analysis of 5 surgeons and their first 10 cases of short segment surgery showed the time per screw by each surgeon was 12.28 ± 5.21, 6.38 ± 1.54, 8.68 ± 3.10, 6.33 ± 1.90, and 6.73 ± 1.81 minutes. The first surgeon who initiated the robotic spine surgery took significantly more time per screw, and the nonlinear parallelism test also revealed only the first surgeon had a steeper learning curve. Conclusion This is the first study to demonstrate that differences of learning curves between individual surgeons and teams. The roles of teamwork and the unmet needs due to lack of active perception are discussed.
Collapse
Affiliation(s)
- Yu-Feng Su
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Tai-Hsin Tsai
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Keng-Liang Kuo
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chieh-Hsin Wu
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yu Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Mou Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shiuh-Lin Hwang
- Department of Spinal Surgery, Chi-Hsien Spine Hospital, Kaohsiung, Taiwan
| | - Pei-Chen Lin
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ann-Shung Lieu
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Tovar MA, Dowlati E, Zhao DY, Khan Z, Pasko KBD, Sandhu FA, Voyadzis JM. Robot-assisted and augmented reality-assisted spinal instrumentation: a systematic review and meta-analysis of screw accuracy and outcomes over the last decade. J Neurosurg Spine 2022; 37:299-314. [PMID: 35213837 DOI: 10.3171/2022.1.spine211345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of technology-enhanced methods in spine surgery has increased immensely over the past decade. Here, the authors present the largest systematic review and meta-analysis to date that specifically addresses patient-centered outcomes, including the risk of inaccurate screw placement and perioperative outcomes in spinal surgeries using robotic instrumentation and/or augmented reality surgical navigation (ARSN). METHODS A systematic review of the literature in the PubMed, EMBASE, Web of Science, and Cochrane Library databases spanning the last decade (January 2011-November 2021) was performed to present all clinical studies comparing robot-assisted instrumentation and ARSN with conventional instrumentation techniques in lumbar spine surgery. The authors compared these two technologies as they relate to screw accuracy, estimated blood loss (EBL), intraoperative time, length of stay (LOS), perioperative complications, radiation dose and time, and the rate of reoperation. RESULTS A total of 64 studies were analyzed that included 11,113 patients receiving 20,547 screws. Robot-assisted instrumentation was associated with less risk of inaccurate screw placement (p < 0.0001) regardless of control arm approach (freehand, fluoroscopy guided, or navigation guided), fewer reoperations (p < 0.0001), fewer perioperative complications (p < 0.0001), lower EBL (p = 0.0005), decreased LOS (p < 0.0001), and increased intraoperative time (p = 0.0003). ARSN was associated with decreased radiation exposure compared with robotic instrumentation (p = 0.0091) and fluoroscopy-guided (p < 0.0001) techniques. CONCLUSIONS Altogether, the pooled data suggest that technology-enhanced thoracolumbar instrumentation is advantageous for both patients and surgeons. As the technology progresses and indications expand, it remains essential to continue investigations of both robotic instrumentation and ARSN to validate meaningful benefit over conventional instrumentation techniques in spine surgery.
Collapse
Affiliation(s)
- Matthew A Tovar
- 1School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Ehsan Dowlati
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - David Y Zhao
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - Ziam Khan
- 3Center for Bioinformatics and Computational Biology, University of Maryland, Baltimore County, Baltimore, Maryland; and
| | - Kory B D Pasko
- 4Georgetown University School of Medicine, Washington, DC
| | - Faheem A Sandhu
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| | - Jean-Marc Voyadzis
- 2Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
6
|
Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up. J Robot Surg 2022; 17:473-485. [PMID: 35788970 DOI: 10.1007/s11701-022-01442-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
This study was performed to prospectively compare the clinical and radiographic outcomes between robot-assisted minimally invasive transforaminal lumbar interbody fusion (RA MIS-TLIF) and fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion (FA MIS-TLIF) in patients with degenerative lumbar spinal diseases. One hundred and twenty-three patients with lumbar degenerative diseases (lumbar spinal stenosis with instability and spondylolisthesis [degenerative spondylolisthesis or isthmic spondylolisthesis]) who underwent MIS-TLIF in our hospital were included in this study. Sixty-one patients underwent RA MIS-TLIF (Group A) and 62 patients underwent FA MIS-TLIF (Group B). Group A was further divided into Subgroup AI (46 single-level procedures) and Subgroup AII (15 double-level procedures). Group B was further divided into Subgroup BI (45 single-level procedures) and Subgroup BII (17 double-level procedures). The clinical outcome parameters were the visual analog scale (VAS) score, Oswestry Disability Index (ODI) score, operative time, number of intraoperative fluoroscopies, blood loss, postoperative hospital stay, and postoperative complications. The radiographic change measures were the accuracy of screw placement, facet joint violation (FJV), fusion status, and change in disc height at the proximal adjacent segment at the 2-year follow-up. There were no significant differences in the VAS and ODI scores, blood loss, or postoperative hospital stay between Groups A and B (p > 0.05). The operative time was longer in Group A than B (p = 0.018). The operative time was longer in Subgroup AI than BI (p = 0.001). However, there was no significant difference between Subgroups AII and BII (p > 0.05). There was no significant difference in the number of intraoperative fluoroscopies for patients between Groups A and B (p > 0.05). Although the number of intraoperative fluoroscopies for patients was significantly higher in Subgroup AI than BI (p = 0.019), there was no significant difference between Subgroups AII and BII (p > 0.05). The number of intraoperative fluoroscopies for the surgeon was significantly lower in Group A than B (p < 0.001). For surgeons, the difference in the average number of intraoperative fluoroscopies between Subgroups AI and AII was 2.98, but that between Subgroups BI and BII was 10.73. In Group A, three guide pins exhibited drift and one patient developed a lateral wall violation by a pedicle screw. One pedicle screw perforated the anterior wall of the vertebral body and another caused an inner wall violation in Group B. The rate of a perfect screw position (grade A) was higher in Group A than B (p < 0.001). However, there was no significant difference in the proportion of clinically acceptable screws (grades A and B) between the two groups. The mean FJV grade was significantly higher in Group B than A (p < 0.001). During at 2-year postoperative follow-up, there was no significant difference in the fusion status between the two groups (p > 0.05); however, the decrease in disc height at the proximal adjacent segment was significantly less in Group A than B (p < 0.001). Robot-assisted percutaneous pedicle screw placement is a safer and more accurate alternative to conventional freehand fluoroscopy-assisted percutaneous pedicle screw insertion in MIS-TLIF.
Collapse
|
7
|
Good CR, Orosz L, Schroerlucke SR, Cannestra A, Lim JY, Hsu VW, Zahrawi F, Villalobos HJ, Ramirez PM, Sweeney T, Wang MY. Complications and Revision Rates in Minimally Invasive Robotic-Guided Versus Fluoroscopic-Guided Spinal Fusions: The MIS ReFRESH Prospective Comparative Study. Spine (Phila Pa 1976) 2021; 46:1661-1668. [PMID: 33826591 PMCID: PMC8565511 DOI: 10.1097/brs.0000000000004048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective, multicenter, partially randomized. OBJECTIVE Assess rates of complications, revision surgery, and radiation between Mazor robotic-guidance (RG) and fluoro-guidance (FG). SUMMARY OF BACKGROUND DATA Minimally invasive surgery MIS ReFRESH is the first study designed to compare RG and FG techniques in adult minimally invasive surgery (MIS) lumbar fusions. METHODS Primary endpoints were analyzed at 1 year follow-up. Analysis of variables through Cox logistic regression and a Kaplan-Meier Survival Curve of surgical complications. RESULTS Nine sites enrolled 485 patients: 374 (RG arm) and 111 (FG arm). 93.2% of patients had more than 1 year f/u. There were no differences for sex, Charlson Comorbidity Index, diabetes, or tumor. Mean age of RG patients was 59.0 versus 62.5 for FG (P = 0.009) and body mass index (BMI) was 31.2 versus 28.1 (P< 0.001). Percentage of smokers was almost double in the RG (15.2% vs. 7.2%, P = 0.029). Surgical time was similar (skin-to-skin time/no. of screws) at 24.9 minutes RG and 22.9 FG (P = 0.550). Fluoroscopy during surgery/no. of screws was 15.5 seconds RG versus 35.4 seconds FG, (15 seconds average reduction). Fluoroscopy time during instrumentation/no. of screws was 3.6 seconds RG versus 17.8 seconds FG showing an 80% average reduction of fluoro time/screw in RG (P < 0.001). Within 1 year follow-up, there were 39 (10.4%) surgical complications RG versus 39 (35.1%) FG, and 8 (2.1%) revisions RG versus 7 (6.3%) FG. Cox regression analysis including age, sex, BMI, CCI, and no. of screws, demonstrated that the hazard ratio (HR) for complication was 5.8 times higher FG versus RG (95% CI: 3.5-9.6, P < 0.001). HR for revision surgery was 11.0 times higher FG versus RG cases (95% CI 2.9-41.2, P < 0.001). CONCLUSION Mazor robotic-guidance was found to have a 5.8 times lower risk of a surgical complication and 11.0 times lower risk for revision surgery. Surgical time was similar between groups and robotic-guidance reduced fluoro time per screw by 80% (approximately 1 min/case).Level of Evidence: 2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Faissal Zahrawi
- Department of Orthopedic Surgery, Florida Hospital, Celebration, FL
| | | | | | - Thomas Sweeney
- Southeastern Spine Center & Research Institute, Sarasota, FL
| | - Michael Y. Wang
- Department of Neurological Surgery, University of Miami Hospital, Miami, FL
| |
Collapse
|
8
|
Thoracic vertebra interbody fusion surgery with robotic assisted system in a swine model. J Clin Neurosci 2021; 92:85-88. [PMID: 34509268 DOI: 10.1016/j.jocn.2021.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/06/2021] [Accepted: 07/24/2021] [Indexed: 11/21/2022]
Abstract
Minimally invasive procedures have been increasing in spine surgery, and interest in robotic systems has inclined. In this study, we aimed to evaluate feasibility of a robotic-assisted thoracic spine interbody fusion in a swine model. Neurosurgeons performed the surgical procedures with robotic surgery certificates on the Da Vinci Xi Surgical System. Surgical approaches were applied using four ports while the swine was in the left lateral position. The surgical procedure was accomplished in 70 min including positioning and preparation of robotic system (20 min), placement of ports and thoracic dissection and confirmation of level with the C-arm system (10 min), discectomy and cage insertion (15 min), control of cage position via the C-arm system and closure (10 min). This study showed the anterior thoracic approach with robotic surgery is safe and feasible with providing a wide working area and high image quality.
Collapse
|
9
|
Pennington Z, Morgan CD, Uribe JS. Commentary: Present and Future Spinal Robotic and Enabling Technologies. Oper Neurosurg (Hagerstown) 2021; 21:S57-S58. [PMID: 34128063 DOI: 10.1093/ons/opaa405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zach Pennington
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Clinton D Morgan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Juan S Uribe
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
10
|
Tan QC, Liu ZX, Zhao Y, Huang XY, Bai H, Yang Z, Zhao X, Du CF, Lei W, Wu ZX. Biomechanical comparison of four types of instrumentation constructs for revision surgery in lumbar adjacent segment disease: A finite element study. Comput Biol Med 2021; 134:104477. [PMID: 34010793 DOI: 10.1016/j.compbiomed.2021.104477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Different constructs are applied in revision surgery (RS) for adjacent segment disease (ASD) aiming to further decompress and fixate the affected segment(s) in two ways: replacing or preserving the primary implants. This study aimed to compare the biomechanical properties of four constructs with different configurations. METHODS An T12-L5 finite element (FE) model was constructed and validated. Primary surgery was performed at L4-L5 and instrumented from L3 to L5. Thereafter, RS was undertook by decompressing L2-L3 and fixated with implant-replacing construct A, or implant-preserving construct B, C or D. Range of motion (ROM) and intervertebral disc pressure (IDP) were compared. Maximum von Mises stress on the rods between Construct A and B was evaluated. RESULTS An obvious reduction of ROM was observed when the FE model was instrumented with four constructs respectively. The overall changing characteristics of ROM were approximately identical among four constructs. The changing characteristic of IDP among four constructs was similar. The degree of IDP reduction of Construct B was comparable to Construct A, while that of Construct C was comparable to Construct D. Maximum von Mises stress on the rods between Construct A and B indicated that no stress concentration was recorded at the locking part of the connector rod. CONCLUSIONS The biomechanics of implant-preserving constructs were comparable to the traditional implant-replacing construct. The location of side-by-side connector could not affect the stability of Construct C and D. Construct B might be an optimal choice in RS for less dissection, less complication and more convenience in manipulation.
Collapse
Affiliation(s)
- Quan-Chang Tan
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China; Department of Orthopedics, Air Force Hospital of Eastern Theater Command, Malujie Road No. 1, Nanjing, Jiangsu Province, 220001, PR China
| | - Zi-Xuan Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Yan Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China
| | - Xin-Yi Huang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China
| | - Zhao Yang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China
| | - Xiong Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China
| | - Cheng-Fei Du
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China.
| | - Zi-Xiang Wu
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Changlexi Road No. 127, Xi'an, Shaanxi Province, 710032, PR China.
| |
Collapse
|
11
|
Weiner JA, McCarthy MH, Swiatek P, Louie PK, Qureshi SA. Narrative review of intraoperative image guidance for transforaminal lumbar interbody fusion. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:89. [PMID: 33553382 PMCID: PMC7859762 DOI: 10.21037/atm-20-1971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/01/2020] [Indexed: 11/11/2022]
Abstract
Recent advancements in imaging technology have changed the landscape of transforaminal lumbar interbody fusion (TLIF) with the objective of improving safety and efficacy for the patient and surgical team. Spine surgery, and specifically TLIFs, involve challenging anatomy and command precise surgical accuracy, creating an essential role for intraoperative imaging, navigation, and robotics. Traditionally, surgeons have relied upon fluoroscopy for pedicle screw and interbody placement. More recently, intraoperative 3-dimensional navigation (ION) has risen in popularity in TLIF surgery. This technology utilizes intra-operative advanced imaging, such as computed tomography (CT) and 3D-fluroscopy, to accurately track instruments and implants in relation to the patient's anatomy. ION has demonstrated improved accuracy of pedicle screw placement, decreased operating room times, and lower radiation exposure to the surgeon and staff. However, conventional fluoroscopy, 3D fluoroscopy, intraoperative CT, image-guided navigation, and robot-assisted surgery all have a role in TLIF surgery. Numerous studies have been published regarding the benefits and pitfalls of these intraoperative tools in spine surgery, but there is a relative lack of research regarding some of the newer technologies surrounding TLIF. As future studies are published, and technology continues to evolve, surgeons must stay abreast of novel techniques to maximize patient safety and outcomes. Over the coming decade, we can expect intraoperative navigation and robotics to play a more significant role in spine surgery.
Collapse
Affiliation(s)
- Joseph A. Weiner
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Michael H. McCarthy
- Hospital for Special Surgery Department of Orthopedic Surgery, New York, NY, USA
| | - Peter Swiatek
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Philip K. Louie
- Hospital for Special Surgery Department of Orthopedic Surgery, New York, NY, USA
| | - Sheeraz A. Qureshi
- Hospital for Special Surgery Department of Orthopedic Surgery, New York, NY, USA
| |
Collapse
|
12
|
Garfjeld Roberts P, Glasbey JC, Abram S, Osei‐Bordom D, Bach SP, Beard DJ. Research quality and transparency, outcome measurement and evidence for safety and effectiveness in robot-assisted surgery: systematic review. BJS Open 2020; 4:1084-1099. [PMID: 33052029 PMCID: PMC7709372 DOI: 10.1002/bjs5.50352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Robot-assisted surgery (RAS) has potential panspecialty surgical benefits. High-quality evidence for widespread implementation is lacking. This systematic review aimed to assess the RAS evidence base for the quality of randomized evidence on safety and effectiveness, specialty 'clustering', and outcomes for RAS research. METHODS A systematic review was undertaken according to PRISMA guidelines. All pathologies and procedures utilizing RAS were included. Studies were limited to RCTs, the English language and publication within the last decade. The main outcomes selected for the review design were safety and efficacy, and study purpose. Secondary outcomes were study characteristics, funding and governance. RESULTS Searches identified 7142 titles, from which 183 RCTs were identified for data extraction. The commonest specialty was urology (35·0 per cent). There were just 76 unique study populations, indicating significant overlap of publications; 103 principal studies were assessed further. Only 64·1 per cent of studies reported a primary outcome measure, with 29·1 per cent matching their registration/protocol. Safety was assessed in 68·9 per cent of trials; operative complications were the commonest measure. Forty-eight per cent of trials reported no significant difference in safety between RAS and comparator, and 11 per cent reported RAS to be superior. Efficacy or effectiveness was assessed in 80·6 per cent of trials; 43 per cent of trials showed no difference between RAS and comparator, and 24 per cent reported that RAS was superior. Funding was declared in 47·6 per cent of trials. CONCLUSION The evidence base for RAS is of limited quality and variable transparency in reporting. No patterns of harm to patients were identified. RAS has potential to be beneficial, but requires continued high-quality evaluation.
Collapse
Affiliation(s)
- P. Garfjeld Roberts
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordUK
| | | | - S. Abram
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordUK
| | | | - S. P. Bach
- Academic Department of SurgeryUK
- Diagnostics, Drugs, Devices and Biomarkers (D3B) and University of BirminghamBirminghamUK
- Royal College of Surgeons of EnglandLondonUK
| | - D. J. Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordUK
- Royal College of Surgeons Surgical Intervention Trials UnitOxfordUK
- Royal College of Surgeons of EnglandLondonUK
| |
Collapse
|
13
|
Dong E, Shi L, Kang J, Li D, Liu B, Guo Z, Wang L, Li X. Biomechanical characterization of vertebral body replacement in situ: Effects of different fixation strategies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105741. [PMID: 32961386 DOI: 10.1016/j.cmpb.2020.105741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Artificial vertebral implant with a lateral or posterior screw-rod fixation system are usually employed in lumbar reconstruction surgery to rebuild the lumbar spine after partial resection due to a tumor or trauma. However, few studies have investigated the effect of the various fixation systems on the biomechanics of the reconstructed lumbar system. This study aims to evaluate the influence of different surgical fixation strategies on the biomechanical performance of a reconstructed lumbar spine system in terms of the strength and long-term stability. METHODS Two typical lumbar spine reconstruction case models that correspond to lateral or posterior fixation systems were built based on the clinical data. Finite element analyses were performed, and comparisons were made between the two models based on the predicted stress distribution of the reconstructed lumbar spine model, bone-growth area of the endplate, and the range of motion under various normal daily activities. RESULTS The load from the upper vertebral body was found to be effectively transmitted onto the lower vertebral body by a vertebral implant with the lateral fixation system; this was favorable for bone growth after surgery. However, significantly high stresses were concentrated around the interaction region between the screws and bone, owing to the uneven lateral fixation structure; this may increase the risk of bone fractures and screw loosening in the long term. For the posterior fixation case, stably posterior fixation structure was favorable to maintain stability for the reconstructed lumbar spine. However, the load was mainly transmitted via the fixation rod rather than the vertebral implant, owing to the stress shielding effect. Therefore, the predicted strain on the endplate were insufficient for bone ingrowth under most of the spinal activates, which could cause bone loss and prosthesis loosening. CONCLUSIONS In this study, the comparisons of the reconstructed lumbar spine system with lateral and posterior fixation strategies were conducted. The Pros and Cons of these two fixation strategies was deeply discussed and the associated clinical issues were provided. The results of this study will have a clear impact in understanding the biomechanics of the lumbar spine with different fixation strategies and providing necessary instructions to the design and application of the lumbar spinal fixation system.
Collapse
Affiliation(s)
- Enchun Dong
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | | | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Bin Liu
- Center for Medical Device Evaluation, National Medical Product Administration, Beijing 100081, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Xiangdong Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol 2020; 20:389-401. [PMID: 33221991 PMCID: PMC7979651 DOI: 10.1007/s10237-020-01403-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
There is an increased interest in studying the biomechanics of the facet joints. For in silico studies, it is therefore important to understand the level of reliability of models for outputs of interest related to the facet joints. In this work, a systematic review of finite element models of multi-level spinal section with facet joints output of interest was performed. The review focused on the methodology used to model the facet joints and its associated validation. From the 110 papers analysed, 18 presented some validation of the facet joints outputs. Validation was done by comparing outputs to literature data, either computational or experimental values; with the major drawback that, when comparing to computational values, the baseline data was rarely validated. Analysis of the modelling methodology showed that there seems to be a compromise made between accuracy of the geometry and nonlinearity of the cartilage behaviour in compression. Most models either used a soft contact representation of the cartilage layer at the joint or included a cartilage layer which was linear elastic. Most concerning, soft contact models usually did not contain much information on the pressure-overclosure law. This review shows that to increase the reliability of in silico model of the spine for facet joints outputs, more needs to be done regarding the description of the methods used to model the facet joints, and the validation for specific outputs of interest needs to be more thorough, with recommendation to systematically share input and output data of validation studies.
Collapse
|
15
|
Li J, Fang Y, Jin Z, Wang Y, Yu M. The impact of robot-assisted spine surgeries on clinical outcomes: A systemic review and meta-analysis. Int J Med Robot 2020; 16:1-14. [PMID: 32725898 DOI: 10.1002/rcs.2143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/04/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Medical robotics has enabled a significant advancement in the field of modern spine surgery, especially in pedicle screw fixation. A plethora of studies focused on the accuracy of pedicle fixation in robotic-assisted (RA) technology. However, it is not clear whether RA techniques can improve patients' clinical outcomes. METHODS We retrieved relevant studies that compare the differences between RA and freehand (FH) techniques in spine surgeries from the following databases: PubMed, Embase, Cochrane Library and Web of Science. The perioperative outcomes of this technology were measured with parameters including radiation exposure, operative time, the length of hospital stay, complication rates and revision rates. Two reviewers independently reviewed the studies in our sample, assessed their validity and extracted relevant data. RESULTS Our search resulted in a sample of 23 eligible studies, which involved 1247 patients (5042 pedicle screws) in the RA group and 1273 patients (4830 pedicle screws) in the FH group. With regard to the radiation exposure, the fluoroscopy time was less in surgeries assisted by Mazor robots (standard mean difference [SMD] = -0.96, 95% CI = -1.60 to -0.31) but more in Tianji robots (SMD = 0.91, 95% CI = 0.17 to 1.66) and ROSA robots (SMD = 2.57, 95% CI = 2.01 to 3.13). For radiation dose, a decrease was observed in Tianji robots (SMD = -1.59, 95% CI = -2.13 to -1.05). In the lumbar subgroup, the use of robots increased the operative time (SMD = 0.53, 95% CI = 0.19 to 0.86). In the degenerative diseases (DG) group, there was a significant decrease in the length of hospital stay when robots were introduced (SMD = -0.30, 95% CI = -0.48 to -0.12). While in the DF (deformity) and DG group, a significant increase was found (SMD = 0.17, 95% CI = 0.02 to 0.32). The complication (OR = 0.41, 95% CI = 0.26 to 0.66) and the revision rates (OR = 0.38, 95% CI = 0.24 to 0.60) showed a significant decrease in the RA group compared to the conventional FH group. CONCLUSIONS This study suggests that RA spine surgeries would result in fewer complications, a lower revision rate and shorter length of hospital stay. As the technology continues to evolve, we may expect more applications of robotic systems in spine surgeries.
Collapse
Affiliation(s)
- Junyu Li
- Peking University Third Hospital, Beijing, China
| | - Yanming Fang
- Peking University Third Hospital, Beijing, China
| | - Zhao Jin
- China-Japan Friendship Hospital, Beijing, China
| | - Yuchen Wang
- Peking University Third Hospital, Beijing, China
| | - Miao Yu
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Molliqaj G, Paun L, Nouri A, Girod PP, Schaller K, Tessitore E. Role of Robotics in Improving Surgical Outcome in Spinal Pathologies. World Neurosurg 2020; 140:664-673. [PMID: 32445895 DOI: 10.1016/j.wneu.2020.05.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The desire to improve accuracy and safety and to favor minimally invasive techniques has given rise to spinal robotic surgery, which has seen a steady increase in utilization in the past 2 decades. However, spinal surgery encompasses a large spectrum of operative techniques, and robotic surgery currently remains confined to assistance with the trajectory of pedicle screw insertion, which has been shown to be accurate and safe based on class II and III evidence. The role of robotics in improving surgical outcomes in spinal pathologies is less clear, however. METHODS This comprehensive review of the literature addresses the role of robotics in surgical outcomes in spinal pathologies with a focus on the various meta-analysis and prospective randomized trials published within the past 10 years in the field. RESULTS It appears that robotic spinal surgery might be useful for increasing accuracy and safety in spinal instrumentation and allows for a reduction in surgical time and radiation exposure for the patient, medical staff, and operator. CONCLUSION Robotic assisted surgery may thus open the door to minimally invasive surgery with greater security and confidence. In addition, the use of robotics facilitates tireless repeated movements with higher precision compared with humans. Nevertheless, it is clear that further studies are now necessary to demonstrate the role of this modern tool in cost-effectiveness and in improving clinical outcomes, such as reoperation rates for screw malpositioning.
Collapse
Affiliation(s)
- Granit Molliqaj
- Neurosurgical Unit, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland.
| | - Luca Paun
- Neurosurgical Unit, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Aria Nouri
- Neurosurgical Unit, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Pierre-Pascal Girod
- Neurosurgical Unit, Innsbruck University Hospital, Faculty of Medicine, Innsbruck, Austria
| | - Karl Schaller
- Neurosurgical Unit, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Enrico Tessitore
- Neurosurgical Unit, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
17
|
Ver MLP, Gum JL, Crawford CH, Djurasovic M, Owens RK, Brown M, Steele P, Carreon LY. Index episode-of-care propensity-matched comparison of transforaminal lumbar interbody fusion (TLIF) techniques: open traditional TLIF versus midline lumbar interbody fusion (MIDLIF) versus robot-assisted MIDLIF. J Neurosurg Spine 2020; 32:741-747. [PMID: 31978884 DOI: 10.3171/2019.9.spine1932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Posterior fixation with interbody cage placement can be accomplished via numerous techniques. In an attempt to expedite recovery by limiting muscle dissection, midline lumbar interbody fusion (MIDLIF) has been described. More recently, the authors have developed a robot-assisted MIDLIF (RA-MIDLIF) technique. The purpose of this study was to compare the index episode-of-care (iEOC) parameters between patients undergoing traditional open transforaminal lumbar interbody fusion (tTLIF), MIDLIF, and RA-MIDLIF. METHODS A retrospective review of a prospective, multisurgeon surgical database was performed. Consecutive patients undergoing 1- or 2-level tTLIF, MIDLIF, or RA-MIDLIF for degenerative lumbar conditions were identified. Patients in each cohort were propensity matched based on age, sex, smoking status, BMI, diagnosis, American Society of Anesthesiologists (ASA) class, and number of levels fused. Index EOC parameters such as length of stay (LOS), estimated blood loss (EBL), operating room (OR) time, and actual, direct hospital costs for the index surgical visit were analyzed. RESULTS Of 281 and 249 patients undergoing tTLIF and MIDLIF, respectively, 52 cases in each cohort were successfully propensity matched to the authors' first 55 RA-MIDLIF cases. Consistent with propensity matching, there was no significant difference in age, sex, BMI, diagnosis, ASA class, or levels fused. Spondylolisthesis was the most common indication for surgery in all cohorts. The mean total iEOC was similar across all cohorts. Patients undergoing RA-MIDLIF had a shorter average LOS (1.53 days) than those undergoing either MIDLIF (2.71 days) or tTLIF (3.58 days). Both MIDLIF and RA-MIDLIF were associated with lower EBL and less OR time compared with tTLIF. CONCLUSIONS Despite concerns for additional cost and time while introducing navigation or robotic technology, a propensity-matched comparison of the authors' first 52 RA-MIDLIF surgeries with tTLIF and MIDLIF showed promising results for reducing OR time, EBL, and LOS without increasing cost.
Collapse
|
18
|
Zhang Q, Xu YF, Tian W, Le XF, Liu B, Liu YJ, He D, Sun YQ, Yuan Q, Lang Z, Han XG. Comparison of Superior-Level Facet Joint Violations Between Robot-Assisted Percutaneous Pedicle Screw Placement and Conventional Open Fluoroscopic-Guided Pedicle Screw Placement. Orthop Surg 2020; 11:850-856. [PMID: 31663290 PMCID: PMC6819175 DOI: 10.1111/os.12534] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Objective To compare the superior‐level facet joint violations (FJV) between robot‐assisted (RA) percutaneous pedicle screw placement and conventional open fluoroscopic‐guided (FG) pedicle screw placement in a prospective cohort study. Methods This was a prospective cohort study without randomization. One‐hundred patients scheduled to undergo RA (n = 50) or FG (n = 50) transforaminal lumbar interbody fusion were included from February 2016 to May 2018. The grade of FJV, the distance between pedicle screws and the corresponding proximal facet joint, and intra‐pedicle accuracy of the top screw were evaluated based on postoperative CT scan. Patient demographics, perioperative outcomes, and radiation exposure were recorded and compared. Perioperative outcomes include surgical time, intraoperative blood loss, postoperative length of stay, conversion, and revision surgeries. Results Of the 100 screws in the RA group, 4 violated the proximal facet joint, while 26 of 100 in the FG group had FJV (P = 0.000). In the RA group, 3 and 1 screws were classified as grade 1 and 2, respectively. Of the 26 FJV screws in the FG group, 17 screws were scored as grade 1, 6 screws were grade 2, and 3 screws were grade 3. Significantly more severe FJV were noted in the FG group than in the RA group (P = 0.000). There was a statistically significant difference between RA and FG for overall violation grade (0.05 vs 0.38, P = 0.000). The average distance of pedicle screws from facet joints in the RA group (4.16 ± 2.60 mm) was larger than that in the FG group (1.92 ± 1.55 mm; P = 0.000). For intra‐pedicle accuracy, the rate of perfect screw position was greater in the RA group than in the FG group (85% vs 71%; P = 0.017). No statistically significant difference was found between the clinically acceptable screws between groups (P = 0.279). The radiation dose was higher in the FG group (30.3 ± 11.3 vs 65.3 ± 28.3 μSv; P = 0.000). The operative time in the RA group was significantly longer (184.7 ± 54.3 vs 117.8 ± 36.9 min; P = 0.000). Conclusions Compared to the open FG technique, minimally invasive RA spine surgery was associated with fewer proximal facet joint violations, larger facet to screw distance, and higher intra‐pedicle accuracy.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Yun-Feng Xu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Wei Tian
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Xiao-Feng Le
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Bo Liu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Ya-Jun Liu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Da He
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Yu-Qin Sun
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Qiang Yuan
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Zhao Lang
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| | - Xiao-Guang Han
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China.,Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China.,Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China
| |
Collapse
|
19
|
D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. ROBOTIC SURGERY (AUCKLAND) 2019; 6:9-23. [PMID: 31807602 PMCID: PMC6844237 DOI: 10.2147/rsrr.s190720] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023]
Abstract
Robot-assisted spine surgery has recently emerged as a viable tool to enable less invasive and higher precision surgery. The first-ever spine robot, the SpineAssist (Mazor Robotics Ltd., Caesarea, Israel), gained FDA approval in 2004. With its ability to provide real-time intraoperative navigation and rigid stereotaxy, robotic-assisted surgery has the potential to increase accuracy while decreasing radiation exposure, complication rates, operative time, and recovery time. Currently, robotic assistance is mainly restricted to spinal fusion and instrumentation procedures, but recent studies have demonstrated its use in increasingly complex procedures such as spinal tumor resections and ablations, vertebroplasties, and deformity correction. However, robots do require high initial costs and training, and thus, require justification for their incorporation into common practice. In this review, we discuss the history of spinal robots along as well as currently available systems. We then examine the literature to evaluate accuracy, operative time, complications, radiation exposure, and costs - comparing robotic-assisted to traditional fluoroscopy-assisted freehand approaches. Finally, we consider future applications for robots in spine surgery.
Collapse
Affiliation(s)
| | | | - Austin Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Anand Veeravagu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Viceconti M. Predicting bone strength from CT data: Clinical applications. Morphologie 2019; 103:180-186. [PMID: 31630964 DOI: 10.1016/j.morpho.2019.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
In this review we summarise over 15 years of research and development around the prediction of whole bones strength from Computed Tomography data, with particular reference to the prediction of the risk of hip fracture in osteoporotic patients. We briefly discuss the theoretical background, and then provide a summary of the laboratory and clinical validation of these modelling technologies. We then discuss the three current clinical applications: in clinical research, in clinical trials, and in clinical practice. On average the strength predicted with finite element models (QCT-FE) based on computed tomography is 7% more accurate that that predicted with areal bone mineral density from Dual X-ray Absorptiometry (DXA-aBMD), the current standard of care, both in term of laboratory validation on cadaver bones and in terms of stratification accuracy on clinical cohorts of fractured and non-fractured women. This improved accuracy makes QCT-FE superior to DXA-aBMD in clinical research and in clinical trials, where the its use can cut in half the number of patients to be enrolled to get the same statistical power. For routine clinical use to decide who to treat with antiresorptive drugs, QCT-FE is more accurate but less cost-effective than DXA-aBMD, at least when the decision is on first line treatment like bisphosphonates. But the ability to predict skeletal strength from medical imaging is now opening a number of other applications, for example in paediatrics and oncology.
Collapse
Affiliation(s)
- M Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
21
|
Spine surgical robotics: review of the current application and disadvantages for future perspectives. J Robot Surg 2019; 14:11-16. [DOI: 10.1007/s11701-019-00983-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
22
|
Finite Element Method Analysis of Compression Fractures on Whole-Spine Models Including the Rib Cage. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:8348631. [PMID: 31191711 PMCID: PMC6525900 DOI: 10.1155/2019/8348631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Spinal compression fractures commonly occur at the thoracolumbar junction. We have previously constructed a 3-dimensional whole-spine model from medical images by using the finite element method (FEM) and then used this model to develop a compression fracture model. However, these models lacked the rib cage. No previous study has used whole-spine models including the rib cage constructed from medical images to analyze compression fractures. Therefore, in this study, we added the rib cage to whole-spine models. We constructed the models, including a normal spine model without the rib cage, a whole-spine model with the rib cage, and whole-spine models with compression fractures, using FEM analysis. Then, we simulated a person falling on the buttocks to perform stress analysis on the models and to examine to what extent the rib cage affects the analysis of compression fractures. The results showed that the intensity of strain and the vertebral body with minimum principle strain differed between the spine model including the rib cage and that excluding the rib cage. The strain on the spine model excluding the rib cage had approximately twice the intensity of the strain on the spine model including the rib cage. Therefore, the rib cage contributed to the stability of the thoracic spine, thus preventing deformation of the upper thoracic spine. However, the presence of the rib cage increased the strain around the site of compression fracture, thus increasing the possibilities of a refracture and fractures of adjacent vertebral bodies. Our study suggests that the analysis using spine models including the rib cage should be considered in future investigations of disorders of the spine and internal fracture fixation. The development of improved models may contribute to the improvement of prognosis and treatment of individual patients with disorders of the spine.
Collapse
|
23
|
Abstract
STUDY DESIGN Systematic review. OBJECTIVE The authors aim to review comparative outcome measures between robotic and free-hand spine surgical procedures including: accuracy of spinal instrumentation, radiation exposure, operative time, hospital stay, and complication rates. SUMMARY OF BACKGROUND DATA Misplacement of pedicle screws in conventional open as well as minimally invasive surgical procedures has prompted the need for innovation and allowed the emergence of robotics in spine surgery. Before incorporation of robotic surgery in routine practice, demonstration of improved instrumentation accuracy, operative efficiency, and patient safety are required. METHODS A systematic search of the PubMed, OVID-MEDLINE, and Cochrane databases was performed for articles relevant to robotic assistance of pedicle screw placement. Inclusion criteria were constituted by English written randomized control trials, prospective and retrospective cohort studies involving robotic instrumentation in the spine. Following abstract, title, and full-text review, 32 articles were selected for study inclusion. RESULTS Intrapedicular accuracy in screw placement and subsequent complications were at least comparable if not superior in the robotic surgery cohort. There is evidence supporting that total operative time is prolonged in robot-assisted surgery compared to conventional free-hand. Radiation exposure appeared to be variable between studies; radiation time did decrease in the robot arm as the total number of robotic cases ascended, suggesting a learning curve effect. Multilevel procedures appeared to tend toward earlier discharge in patients undergoing robotic spine surgery. CONCLUSION The implementation of robotic technology for pedicle screw placement yields an acceptable level of accuracy on a highly consistent basis. Surgeons should remain vigilant about confirmation of robotic-assisted screw trajectory, as drilling pathways have been shown to be altered by soft tissue pressures, forceful surgical application, and bony surface skiving. However, the effective consequence of robot-assistance on radiation exposure, length of stay, and operative time remains unclear and requires meticulous examination in future studies. LEVEL OF EVIDENCE 4.
Collapse
|
24
|
Kim HJ, Kang KT, Chun HJ, Hwang JS, Chang BS, Lee CK, Yeom JS. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: A prospective, randomized controlled trial. Int J Med Robot 2018; 14:e1917. [DOI: 10.1002/rcs.1917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 03/17/2018] [Accepted: 04/01/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Ho-Joong Kim
- Spine Center and Department of Orthopaedic Surgery; Seoul National University College of Medicine and Seoul National University Bundang Hospital; Sungnam Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering; Yonsei University; Seoul Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering; Yonsei University; Seoul Republic of Korea
| | - Ji Sup Hwang
- Spine Center and Department of Orthopaedic Surgery; Seoul National University College of Medicine and Seoul National University Bundang Hospital; Sungnam Republic of Korea
| | - Bong-Soon Chang
- Department of Orthopaedic Surgery; Seoul National University College of Medicine and Seoul National University Hospital; Seoul Republic of Korea
| | - Choon-Ki Lee
- Department of Orthopaedic Surgery; Seoul National University College of Medicine and Seoul National University Hospital; Seoul Republic of Korea
| | - Jin S. Yeom
- Spine Center and Department of Orthopaedic Surgery; Seoul National University College of Medicine and Seoul National University Bundang Hospital; Sungnam Republic of Korea
| |
Collapse
|
25
|
Park SM, Kim HJ, Lee SY, Chang BS, Lee CK, Yeom JS. Radiographic and Clinical Outcomes of Robot-Assisted Posterior Pedicle Screw Fixation: Two-Year Results from a Randomized Controlled Trial. Yonsei Med J 2018; 59:438-444. [PMID: 29611407 PMCID: PMC5889997 DOI: 10.3349/ymj.2018.59.3.438] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We prospectively assessed the early radiographic and clinical outcomes (minimum follow-up of 2 years) of robot-assisted pedicle screw fixation (Robot-PSF) and conventional freehand pedicle screw fixation (Conv-PSF). MATERIALS AND METHODS Patients were randomly assigned to Robot-PSF (37 patients) or Conv-PSF (41 patients) for posterior interbody fusion surgery. The Robot-PSF group underwent minimally invasive pedicle screw fixation using a pre-planned robot-guided screw trajectory. The Conv-PSF underwent screw fixation using the freehand technique. Radiographic adjacent segment degeneration (ASD) was measured on plain radiographs, and clinical outcomes were measured using visual analogue scale (VAS) and Oswestry disability index (ODI) scores regularly after surgery. RESULTS The two groups had similar values for radiographic ASD, including University California at Los Angeles grade, vertebral translation, angular motion, and loss of disc height (p=0.320). At final follow-up, both groups had experienced significant improvements in back VAS, leg VAS, and ODI scores after surgery (p<0.001), although inter-group differences were not significant for back VAS (p=0.876), leg VAS (p=0.429), and ODI scores (p=0.952). In the Conv-PSF group, revision surgery was required for two of the 25 patients (8%), compared to no patients in the Robot-PSF group. CONCLUSION There were no significant differences in radiographic ASD and clinical outcomes between Robot-PSF and Conv-PSF. Thus, the advantages of robot-assisted surgery (accurate pedicle screw insertion and minimal facet joint violation) do not appear to be clinically significant.
Collapse
Affiliation(s)
- Sang Min Park
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Joong Kim
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Yeon Lee
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bong Soon Chang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Choon Ki Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin S Yeom
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
26
|
Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: A systemic review. Neurosurg Rev 2018; 43:17-25. [DOI: 10.1007/s10143-018-0971-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/24/2022]
|
27
|
Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:921-930. [DOI: 10.1007/s00586-017-5333-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|