1
|
Li Y, Wang W, Kong C, Chen X, Li C, Lu S. Identifying the miRNA-gene networks contributes to exploring paravertebral muscle degeneration's underlying pathogenesis and therapy strategy. Heliyon 2024; 10:e30517. [PMID: 38765163 PMCID: PMC11098802 DOI: 10.1016/j.heliyon.2024.e30517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Low back pain (LBP) is a worldwide problem with public health. Paravertebral muscle degeneration (PMD) is believed to be associated with LBP. Increasing evidence has demonstrated that microRNA (miRNA)-mRNA signaling networks have been implicated in the pathophysiology of diseases. Research suggests that cell death, oxidative stress, inflammatory and immune response, and extracellular matrix (ECM) metabolism are the pathogenesis of PMD; however, the miRNA-mRNA mediated the pathological process of PMD remains elusive. RNA sequencing (RNA-seq) and single cell RNA-seq (scRNA-seq) are invaluable tools for uncovering the functional biology underlying these miRNA and gene expression changes. Using scRNA-seq, we show that multiple immunocytes are presented during PMD, revealing that they may have been implicated with PMD. Additionally, using RNA-seq, we identified 76 differentially expressed genes (DEGs) and 106 differentially expressed miRNAs (DEMs), among which IL-24 and CCDC63 were the top upregulated and downregulated genes in PMD. Comprehensive bioinformatics analyses, including Venn diagrams, differential expression, functional enrichment, and protein-protein interaction analysis, were then conducted to identify six ferroptosis-related DEGs, two oxidative stress-related DEGs, eleven immunity-related DEGs, five ECM-related DEGs, among which AKR1C2/AKR1C3/SIRT1/ALB/IL-24 belong to inflammatory genes. Furthermore, 67 DEMs were predicted to be upstream miRNAs of 25 key DEGs by merging RNA-seq, TargetScan, and mirDIP databases. Finally, a miRNA-gene network was constructed using Cytoscape software and an alluvial plot. ROC curve analysis unveiled multiple key DEGs with the high clinical diagnostic value, providing novel approaches for diagnosing and treating PMD diseases.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- Spine Center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17, Lujiang Road, Hefei, Anhui, 230001, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chaoyi Li
- Department of Joint Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| |
Collapse
|
2
|
Zhang X, Wang Q, Wang Y, Ma C, Zhao Q, Yin H, Li L, Wang D, Huang Y, Zhao Y, Shi X, Li X, Huang C. Interleukin-6 promotes visceral adipose tissue accumulation during aging via inhibiting fat lipolysis. Int Immunopharmacol 2024; 132:111906. [PMID: 38593501 DOI: 10.1016/j.intimp.2024.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yaru Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Chen Ma
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qing Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hongyan Yin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Yinxiang Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
3
|
Weiwei, Wang S, Hou D, Zhan L. Methods and research progress in the construction of animal models of osteosarcopenia: a scoping review. Front Endocrinol (Lausanne) 2023; 14:1228937. [PMID: 37964970 PMCID: PMC10641866 DOI: 10.3389/fendo.2023.1228937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Background Osteosarcopenia(OS) is a significant health concern resulting from the ageing process. Currently, as the population grows older, the prevalence of OS, a disease that entails the synchronous degeneration of muscles and bones, is mounting. This poses a serious threat to the health of the elderly while placing an enormous burden on social care. In order to comprehend the pathological mechanism of OS and develop clinical drugs, it is pertinent to construct an efficient animal model of OS. To investigate the modeling techniques of diverse experimental models of OS and elucidate their respective benefits and drawbacks, with the purpose of furnishing a theoretical foundation to advance experimental research on OS. Methods We searched PubMed, Embase database, China Knowledge Network, Wanfang data platform and Vipshop journal platform databases from 2000 through to September 1, 2023. We included animal studies on sarcopenia or osteoporosis or osteosarcopenia or sarcopenia-osteoporosis, modeling methods for osteosarcopenia. Two independently screened study abstracts and full reports and complete data extraction. Results Eventually, Of 112, 106 citations screened. 4938 underwent full-text review and 38 met the inclusion criteria. we reviewed and analyzed the literature and categorized the animal models of OS into the following five categories: Aging OS models; Hormonal deficiency model of OS;Chemical injection to induce OS;Disuse OS models and Genetic engineering OS models. Conclusion This review outlines animal modeling approaches for OS, providing a comprehensive summary of their advantages and disadvantages. The different models were evaluated and selected based on their respective strengths and weaknesses to enable higher quality research outcomes in various research directions. The most widely used and established approach is considered to be the ageing and chemical injection OS model, which has the advantages of excellent reproducibility and low cost. The translational potential of this article To gain a profound comprehension of the pathological mechanism of OS and to devise efficacious clinical treatments, it is imperative to establish a viable laboratory animal model of OS. This article surveys various modeling techniques assessing their benefits, drawbacks and areas of applicability while predominantly employing mice as the primary model animal. Additionally, the evaluation indicators of OS models are briefly described.
Collapse
Affiliation(s)
- Weiwei
- The Second Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shixuan Wang
- The Second Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Decai Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Libin Zhan
- Liaoning University of Traditional Chinese Medicine, Experimental Platform, Shenyang, China
| |
Collapse
|
4
|
Noonan AM, Buliung E, Briar KJ, Quinonez D, Séguin CA, Brown SHM. Glycerol induced paraspinal muscle degeneration leads to hyper-kyphotic spinal deformity in wild-type mice. Sci Rep 2023; 13:8170. [PMID: 37210442 DOI: 10.1038/s41598-023-35506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023] Open
Abstract
Degenerative spinal disorders, including kyphotic deformity, are associated with a range of degenerative characteristics of the paraspinal musculature. It has therefore been hypothesized that paraspinal muscular dysfunction is a causative factor for degenerative spinal deformity; however, experimental studies demonstrating causative relationships are lacking. Male and female mice received either glycerol or saline injections bilaterally along the length of the paraspinal muscles at four timepoints, each separated by 2 weeks. Immediately after sacrifice, micro-CT was performed to measure spinal deformity; paraspinal muscle biopsies were taken to measure active, passive and structural properties; and lumbar spines were fixed for analysis of intervertebral disc (IVD) degeneration. Glycerol-injected mice demonstrated clear signs of paraspinal muscle degeneration and dysfunction: significantly (p < 0.01) greater collagen content, lower density, lower absolute active force, greater passive stiffness compared to saline-injected mice. Further, glycerol-injected mice exhibited spinal deformity: significantly (p < 0.01) greater kyphotic angle than saline-injected mice. Glycerol-injected mice also demonstrated a significantly (p < 0.01) greater IVD degenerative score (although mild) at the upper-most lumbar level compared to saline-injected mice. These findings provide direct evidence that combined morphological (fibrosis) and functional (actively weaker and passively stiffer) alterations to the paraspinal muscles can lead to negative changes and deformity within the thoracolumbar spine.
Collapse
Affiliation(s)
- Alex M Noonan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emily Buliung
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - K Josh Briar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Bone and Joint Institute, University of Western Ontario, London, ON, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Bone and Joint Institute, University of Western Ontario, London, ON, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Elkenani M, Barakat AZ, Held T, Rodrigues DM, Mobarak S, Swarnka S, Adham IM, Mohamed BA. Heat shock protein A4 ablation leads to skeletal muscle myopathy associated with dysregulated autophagy and induced apoptosis. J Transl Med 2022; 20:229. [PMID: 35568953 PMCID: PMC9107738 DOI: 10.1186/s12967-022-03418-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Molecular chaperones assist protein folding, facilitate degradation of misfolded polypeptides, and thereby maintain protein homeostasis. Impaired chaperone activity leads to defective protein quality control that is implicated in multiple skeletal muscle diseases. The heat shock protein A4 (HSPA4) acts as a co-chaperone for HSP70. Previously, we showed that Hspa4 deletion causes impaired protein homeostasis in the heart. However, its functional role in skeletal muscle has not been explored. METHODS We performed a comparative phenotypic and biochemical analyses of Hspa4 knockout (KO) mice with wild-type (WT) littermates. RESULTS HSPA4 is markedly upregulated in regenerating WT muscle in vivo, and in differentiated myoblasts in vitro. Hspa4-KO mice are marked by growth retardation and increased variability in body weight, accompanied by 35% mortality rates during the peri-weaning period. The surviving Hspa4-KO mice experienced progressive skeletal muscle myopathy, characterized by increased number of muscle fibers with centralized nuclei, heterogeneous myofiber size distribution, inflammatory cell infiltrates and upregulation of embryonic and perinatal myosin heavy chain transcripts. Hspa4-KO muscles demonstrated an accumulation of autophagosome-associated proteins including microtubule associated protein1 light chain 3-II (LC3-II) and p62/sequestosome accompanied by increased number of TUNEL-positive nuclei. CONCLUSIONS Our findings underscore the indispensable role of HSPA4 in maintenance of muscle integrity through contribution in skeletal muscle autophagy and apoptosis, which might provide a novel therapeutic strategy for skeletal muscle morbidities.
Collapse
Affiliation(s)
- Manar Elkenani
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Amal Z Barakat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Torsten Held
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Marques Rodrigues
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sherok Mobarak
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | - Surabhi Swarnka
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Li Y, Kong C, Wang B, Sun W, Chen X, Zhu W, Ding J, Lu S. Identification of differentially expressed genes in mouse paraspinal muscle in response to microgravity. Front Endocrinol (Lausanne) 2022; 13:1020743. [PMID: 36313746 PMCID: PMC9611771 DOI: 10.3389/fendo.2022.1020743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Lower back pain (LBP) is the primary reason leading to dyskinesia in patients, which can be experienced by people of all ages. Increasing evidence have revealed that paraspinal muscle (PSM) degeneration (PSMD) is a causative contributor to LBP. Current research revealed that fatty infiltration, tissue fibrosis, and muscle atrophy are the characteristic pathological alterations of PSMD, and muscle atrophy is associated with abnormally elevated oxidative stress, reactive oxygen species (ROS) and inflammation. Interestingly, microgravity can induce PSMD and LBP. However, studies on the molecular mechanism of microgravity in the induction of PSMD are strongly limited. This study identified 23 differentially expressed genes (DEGs) in the PSM (longissimus dorsi) of mice which were flown aboard the Bion M1 biosatellite in microgravity by bioinformatics analysis. Then, we performed protein-protein interaction, Gene Ontology function, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the DEGs. We found that Il6ra, Tnfaip2, Myo5a, Sesn1, Lcn2, Lrg1, and Pik3r1 were inflammatory genes; Fbox32, Cdkn1a, Sesn1, and Mafb were associated with muscle atrophy; Cdkn1a, Sesn1, Lcn2, and Net1 were associated with ROS; and Sesn1 and Net1 were linked to oxidative stress. Furthermore, Lcn2, Fbxo32, Cdkn1a, Pik3r1, Sesn1, Net1, Il6ra, Myo5a, Lrg1, and Pfkfb3 were remarkably upregulated, whereas Tnfaip2 and Mafb were remarkably downregulated in PSMD, suggesting that they might play a significant role in regulating the occurrence and development of PSMD. These findings provide theoretical basis and therapeutic targets for the treatment of PSMD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baobao Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiguo Zhu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junzhe Ding
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Shibao Lu,
| |
Collapse
|
7
|
Radchenko V, Ashukina N, Maltseva V, Skidanov M, Nikolchenko O, Danyshchuk Z, Skidanov A. MODELS OF PARASPINAL MUSCLE DEGENERATION IN RATS: HIGH-FAT DIET AND PROLONGED COMPRESSION. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2280-2285. [PMID: 36378709 DOI: 10.36740/wlek202209218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim: To study the structural features of the lumbar m. multifidus and the m. psoas after keeping rats on a high-fat diet (obesity) or compressing their lumbar paraspinal muscles by binding the muscles using non-absorbable sutures. PATIENTS AND METHODS Materials and methods: The study was performed on 2-month-old male rats (n=15) into three groups of 5: control group (normal diet without any surgical interventions), high-fat diet (model I: 40-45% kcal fat), and paraspinal muscles compression (model II: paraspinal muscles were tied from L2 to S1 with non-absorbable sutures Nurolon® 3). The experiment lasted for 90 days, after those fragments of the lumbar m. multifidus and m. psoas removed and histomorphometry analysis performed. RESULTS Results: 12 weeks from the beginning of the experiment, the high-fat diet rats weighed, on average, 22% (p=0.001) more than the control group rats. Similar degenerative changes such as uneven muscle fibre width and sarcoplasm colouring, 'wavy' and swollen fibres, loss of striation, karyopyknosis were observed in the lumbar paraspinal muscles in both models. In high-fat diet group the fat area (%) in the m. multifidus was 1.8 times larger (р<0.001) and in the m. psoas was greater by 2.2 times (р<0.001) than in the control. Fibrous tissue replaced muscle fibres in m. multifidus in model II and was 12.66%. CONCLUSION Conclusions: The relevance of the models is proven: after 3 months, it is possible to obtain degenerative changes in the muscle tissue that are extremely similar to those observed in the muscles of patients with degenerative spine diseases.
Collapse
Affiliation(s)
| | | | | | - Mykyta Skidanov
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY, KHARKIV, UKRAINE
| | - Olga Nikolchenko
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY, KHARKIV, UKRAINE
| | | | - Artem Skidanov
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY, KHARKIV, UKRAINE
| |
Collapse
|