1
|
Han B, Yang J, Zhang Z. Selective Methods Promote Protein Solid-State NMR. J Phys Chem Lett 2024:11300-11311. [PMID: 39495892 DOI: 10.1021/acs.jpclett.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is indispensable for studying the structures, dynamics, and interactions of insoluble proteins in native or native-like environments. While ssNMR includes numerous nonselective techniques for general analysis, it also provides various selective methods that allow for the extraction of precise details about proteins. This perspective highlights three key aspects of selective methods: selective signals of protein segments, selective recoupling, and site-specific insights into proteins. These methods leverage protein topology, labeling strategies, and the tailored manipulation of spin interactions through radio frequency (RF) pulses, significantly promoting the field of protein ssNMR. With ongoing advancements in higher magnetic fields and faster magic angle spinning (MAS), there remains an ongoing need to enhance the selectivity and efficiency of selective ssNMR methods, facilitating deeper atomic-level insights into complex biological systems.
Collapse
Affiliation(s)
- Bin Han
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Zhang Z, Kato K, Tamaki H, Matsuki Y. Background signal suppression by opposite polarity subtraction for targeted DNP NMR spectroscopy on mixture samples. Phys Chem Chem Phys 2024; 26:9880-9890. [PMID: 38317640 DOI: 10.1039/d3cp06280e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel method for background signal suppression is introduced to improve the selectivity of dynamic nuclear polarization (DNP) NMR spectroscopy in the study of target molecules within complex mixtures. The method uses subtraction between positively and negatively enhanced DNP spectra, leading to an improved contrast factor, which is the ratio between the target and background signal intensities. The proposed approach was experimentally validated using a reverse-micelle system that confines the target molecules together with the polarizing agent, OX063 trityl. A substantial increase in the contrast factor was observed, and the contrast factor was optimized through careful selection of the DNP build-up time. A simulation study based on the experimental results provides insights into a strategy for choosing the appropriate DNP build-up time and the corresponding selectivity of the method. Further analysis revealed a broad applicability of the technique, encompassing studies from large biomolecules to surface-modified polymers, depending on the nuclear spin diffusion rate with a range of gyromagnetic ratios.
Collapse
Affiliation(s)
- Zhongliang Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken Kato
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
De Biasi F, Hope MA, Avalos CE, Karthikeyan G, Casano G, Mishra A, Badoni S, Stevanato G, Kubicki DJ, Milani J, Ansermet JP, Rossini AJ, Lelli M, Ouari O, Emsley L. Optically Enhanced Solid-State 1H NMR Spectroscopy. J Am Chem Soc 2023. [PMID: 37366803 DOI: 10.1021/jacs.3c03937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor-acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for 13C and 15N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state 1H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor-chromophore-acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled 1H nuclei relays polarization through the whole sample, yielding a 16-fold bulk 1H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP.
Collapse
Affiliation(s)
- Federico De Biasi
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael A Hope
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Claudia E Avalos
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ganesan Karthikeyan
- Institute of Radical Chemistry, Aix-Marseille University, CNRS, ICR, 13013 Marseille, France
| | - Gilles Casano
- Institute of Radical Chemistry, Aix-Marseille University, CNRS, ICR, 13013 Marseille, France
| | - Aditya Mishra
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Saumya Badoni
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Stevanato
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dominik J Kubicki
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonas Milani
- Institut de Physique, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jean-Philippe Ansermet
- Institut de Physique, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aaron J Rossini
- U.S. Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche delle Metalloproteine Paramagnetiche (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Olivier Ouari
- Institute of Radical Chemistry, Aix-Marseille University, CNRS, ICR, 13013 Marseille, France
| | - Lyndon Emsley
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Zaręba J, Jenczyk J, Dobies M, Makrocka-Rydzyk M, Woźniak-Braszak A, Jarek M, Jancelewicz M, Banaszak M. Block copolymer interfaces investigated by means of NMR, atomic force microscopy and dielectric spectroscopy. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Guzman-Juarez B, Abdelaal AB, Reven L. NMR Characterization of Nanoscale Surface Patterning in Mixed Ligand Nanoparticles. ACS NANO 2022; 16:20116-20128. [PMID: 36411252 DOI: 10.1021/acsnano.2c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.
Collapse
Affiliation(s)
- Brenda Guzman-Juarez
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Ahmed Bahaeldin Abdelaal
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Linda Reven
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| |
Collapse
|
6
|
1H T1ρ based ROSY: NMR spectral fingerprints for nanoscale phase separated structure of block copolymers. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Prisco NA, Pinon AC, Emsley L, Chmelka BF. Scaling analyses for hyperpolarization transfer across a spin-diffusion barrier and into bulk solid media. Phys Chem Chem Phys 2021; 23:1006-1020. [PMID: 33404028 DOI: 10.1039/d0cp03195j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By analogy to heat and mass transfer film theory, a general approach is introduced for determining hyperpolarization transfer rates between dilute electron spins and a surrounding nuclear ensemble. These analyses provide new quantitative relationships for understanding, predicting, and optimizing the effectiveness of hyperpolarization protocols, such as Dynamic Nuclear Polarization (DNP) under magic-angle spinning conditions. An empirical DNP polarization-transfer coefficient is measured as a function of the bulk matrix 1H spin density and indicates the presence of two distinct kinetic regimes associated with different rate-limiting polarization transfer phenomena. Dimensional property relationships are derived and used to evaluate the competitive rates of spin polarization generation, propagation, and dissipation that govern hyperpolarization transfer between large coupled spin ensembles. The quantitative analyses agree closely with experimental measurements for the accumulation, propagation, and dissipation of hyperpolarization in solids and provide evidence for kinetically-limited transfer associated with a spin-diffusion barrier. The results and classical approach yield general design criteria for analyzing and optimizing polarization transfer processes involving complex interfaces and composite media for applications in materials science, physical chemistry and nuclear spintronics.
Collapse
Affiliation(s)
- Nathan A Prisco
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| |
Collapse
|
8
|
Duan P, Lamm MS, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol Pharm 2020; 17:3567-3580. [DOI: 10.1021/acs.molpharmaceut.0c00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew S. Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fengyuan Yang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
Kunhi Mohamed A, Moutzouri P, Berruyer P, Walder BJ, Siramanont J, Harris M, Negroni M, Galmarini SC, Parker SC, Scrivener KL, Emsley L, Bowen P. The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. J Am Chem Soc 2020; 142:11060-11071. [PMID: 32406680 DOI: 10.1021/jacs.0c02988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite use of blended cements containing significant amounts of aluminum for over 30 years, the structural nature of aluminum in the main hydration product, calcium aluminate silicate hydrate (C-A-S-H), remains elusive. Using first-principles calculations, we predict that aluminum is incorporated into the bridging sites of the linear silicate chains and that at high Ca:Si and H2O ratios, the stable coordination number of aluminum is six. Specifically, we predict that silicate-bridging [AlO2(OH)4]5- complexes are favored, stabilized by hydroxyl ligands and charge balancing calcium ions in the interlayer space. This structure is then confirmed experimentally by one- and two-dimensional dynamic nuclear polarization enhanced 27Al and 29Si solid-state NMR experiments. We notably assign a narrow 27Al NMR signal at 5 ppm to the silicate-bridging [AlO2(OH)4]5- sites and show that this signal correlates to 29Si NMR signals from silicates in C-A-S-H, conflicting with its conventional assignment to a "third aluminate hydrate" (TAH) phase. We therefore conclude that TAH does not exist. This resolves a long-standing dilemma about the location and nature of the six-fold-coordinated aluminum observed by 27Al NMR in C-A-S-H samples.
Collapse
Affiliation(s)
- Aslam Kunhi Mohamed
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Institute for Building Materials, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Brennan J Walder
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jirawan Siramanont
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,SCG CEMENT Co., Ltd., Saraburi 18260, Thailand
| | - Maya Harris
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mattia Negroni
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandra C Galmarini
- Building Energy Materials and Components, EMPA, CH-8600 Dübendorf, Switzerland
| | - Stephen C Parker
- Computational Solid State Chemistry Group, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Karen L Scrivener
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul Bowen
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Yuan S, Duan P, Berthier DL, León G, Sommer H, Saint-Laumer JYD, Schmidt-Rohr K. Multinuclear solid-state NMR of complex nitrogen-rich polymeric microcapsules: Weight fractions, spectral editing, component mixing, and persistent radicals. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101650. [PMID: 32044558 DOI: 10.1016/j.ssnmr.2020.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The molecular structure of a crosslinked nitrogen-rich resin made from melamine, urea, and aldehydes, and of microcapsules made from the reactive resin with multiple polymeric components in aqueous dispersion, has been analyzed by 13C, 13C{1H}, 1H-13C, 1H, 13C{14N}, and 15N solid-state NMR without isotopic enrichment. Quantitative 13C NMR spectra of the microcapsules and three precursor materials enable determination of the fractions of different components. Spectral editing of non-protonated carbons by recoupled dipolar dephasing, of CH by dipolar DEPT, and of C-N by 13C{14N} SPIDER resolves peak overlap and helps with peak assignment. It reveals that the N- and O-rich resin "imitates" the spectrum of polysaccharides such as chitin, cellulose, or Ambergum to an astonishing degree. 15N NMR can distinguish melamine from urea and guanazole, NC=O from COO, and primary from secondary amines. Such a comprehensive and quantitative analysis enables prediction of the elemental composition of the resin, to be compared with combustion analysis for validation. It also provides a reliable reference for iterative simulations of 13C NMR spectra from structural models. The conversion from quantitative NMR peak areas of structural components to the weight fractions of interest in industrial practice is derived and demonstrated. Upon microcapsule formation, 15N and 13C NMR consistently show loss of urea and aldehyde and an increase in primary amines while melamine is retained. NMR also made unexpected findings, such as imbedded crystallites in one of the resins, as well as persistent radicals in the microcapsules. The crystallites produce distinct sharp lines and are distinguished from liquid-like components by their strong dipolar couplings, resulting in fast dipolar dephasing. Fast 1H spin-lattice relaxation on the 35-ms time scale and characteristically non-exponential 13C spin-lattice relaxation indicate persistent radicals, confirmed by EPR. Through 1H spin diffusion, the mixing of components on the 5-nm scale was documented.
Collapse
Affiliation(s)
- Shichen Yuan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Pu Duan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Damien L Berthier
- Firmenich SA, Corporate Research Division, 1 Routes des Jeunes, 1211, Genève 8, Switzerland
| | - Géraldine León
- Firmenich SA, Corporate Research Division, 1 Routes des Jeunes, 1211, Genève 8, Switzerland
| | - Horst Sommer
- Firmenich SA, Corporate Research Division, 1 Routes des Jeunes, 1211, Genève 8, Switzerland
| | | | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| |
Collapse
|
11
|
Walder BJ, Prisco NA, Paruzzo FM, Yarava JR, Chmelka BF, Emsley L. Measurement of Proton Spin Diffusivity in Hydrated Cementitious Solids. J Phys Chem Lett 2019; 10:5064-5069. [PMID: 31393127 DOI: 10.1021/acs.jpclett.9b01861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study of hydration and crystallization processes involving inorganic oxides is often complicated by poor long-range order and the formation of heterogeneous domains or surface layers. In solid-state NMR, 1H-1H spin diffusion analyses can provide information on spatial composition distributions, domain sizes, or miscibility in both ordered and disordered solids. Such analyses have been implemented in organic solids but crucially rely on separate measurements of the 1H spin diffusion coefficients in closely related systems. We demonstrate that an experimental NMR method, in which "holes" of well-defined dimensions are created in proton magnetization, can be applied to determine spin diffusion coefficients in cementitious solids hydrated with 17O-enriched water. We determine proton spin diffusion coefficients of 240 ± 40 nm2/s for hydrated tricalcium aluminate and 140 ± 20 nm2/s for hydrated tricalcium silicate under quasistatic conditions.
Collapse
Affiliation(s)
- Brennan J Walder
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nathan A Prisco
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Federico M Paruzzo
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jayasubba Reddy Yarava
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Duan P, Moreton JC, Tavares SR, Semino R, Maurin G, Cohen SM, Schmidt-Rohr K. Polymer Infiltration into Metal–Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR. J Am Chem Soc 2019; 141:7589-7595. [DOI: 10.1021/jacs.9b02789] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jessica C. Moreton
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Sergio R. Tavares
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
13
|
Yesinowski JP, Miller JB, Klug CA, Ricks-Laskoski HL. Optorelaxers: Achieving real-time control of NMR relaxation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 96:1-9. [PMID: 30253250 DOI: 10.1016/j.ssnmr.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
We present an approach to increase the detection sensitivity of NMR by shortening the spin-lattice relaxation time using transient paramagnetic species created by light irradiation of "optorelaxer" molecules. In the ultimate implementation of this concept, not yet realized here, these transient species are absent during the detection period, thereby avoiding the loss of spectral resolution caused by inhomogeneous broadening from paramagnetic species. Real-time control of NMR relaxation by visible light is demonstrated with Fe(II)(ptz)6(BF4)2, (ptz = 1-propyltetrazole), abbreviated FePTZ. Illumination of FePTZ at 30 K results in a decrease of the 1H NMR spin-lattice relaxation time T1 due to formation of a high spin photoexcited state. The 1H NMR of polystyrene containing a low concentration of FePTZ molecules shows a similar reduction in T1, establishing that FePTZ can act as an optorelaxer for the protons of a matrix. Numerical modeling of the spin-diffusion processes from the protons in a FePTZ core to those in a shell of polystyrene accounts for the observed T1 effects under both dark and light conditions. Additionally, 1H MAS (magic-angle spinning) NMR results for pure FePTZ provide information on the isotropic and anisotropic portions of the electron-nuclear hyperfine interactions.
Collapse
Affiliation(s)
| | - Joel B Miller
- Naval Research Laboratory, Washington, DC, 20375, USA
| | | | | |
Collapse
|
14
|
Brus J, Czernek J, Hruby M, Svec P, Kobera L, Abbrent S, Urbanova M. Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiri Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Jiri Czernek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Sabina Abbrent
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Martina Urbanova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
15
|
Roos M, Wang T, Shcherbakov AA, Hong M. Fast Magic-Angle-Spinning 19F Spin Exchange NMR for Determining Nanometer 19F- 19F Distances in Proteins and Pharmaceutical Compounds. J Phys Chem B 2018; 122:2900-2911. [PMID: 29486126 PMCID: PMC6312665 DOI: 10.1021/acs.jpcb.8b00310] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Internuclear distances measured using NMR provide crucial constraints of three-dimensional structures but are often restricted to about 5 Å due to the weakness of nuclear-spin dipolar couplings. For studying macromolecular assemblies in biology and materials science, distance constraints beyond 1 nm will be extremely valuable. Here we present an extensive and quantitative analysis of the feasibility of 19F spin exchange NMR for precise and robust measurements of interatomic distances up to 1.6 nm at a magnetic field of 14.1 T, under 20-40 kHz magic-angle spinning (MAS). The measured distances are comparable to those achievable from paramagnetic relaxation enhancement but have higher precision, which is better than ±1 Å for short distances and ±2 Å for long distances. For 19F spins with the same isotropic chemical shift but different anisotropic chemical shifts, intermediate MAS frequencies of 15-25 kHz without 1H irradiation accelerate spin exchange. For spectrally resolved 19F-19F spin exchange, 1H-19F dipolar recoupling significantly speeds up 19F-19F spin exchange. On the basis of data from five fluorinated synthetic, pharmaceutical, and biological compounds, we obtained two general curves for spin exchange between CF groups and between CF3 and CF groups. These curves allow 19F-19F distances to be extracted from the measured spin exchange rates after taking into account 19F chemical shifts. These results demonstrate the robustness of 19F spin exchange NMR for distance measurements in a wide range of biological and chemical systems.
Collapse
Affiliation(s)
- Matthias Roos
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Tuo Wang
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alexander A Shcherbakov
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
16
|
Naiserová M, Kubová K, Vysloužil J, Pavloková S, Vetchý D, Urbanová M, Brus J, Vysloužil J, Kulich P. Investigation of Dissolution Behavior HPMC/Eudragit ®/Magnesium Aluminometasilicate Oral Matrices Based on NMR Solid-State Spectroscopy and Dynamic Characteristics of Gel Layer. AAPS PharmSciTech 2018; 19:681-692. [PMID: 28971441 DOI: 10.1208/s12249-017-0870-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Burst drug release is often considered a negative phenomenon resulting in unexpected toxicity or tissue irritation. Optimal release of a highly soluble active pharmaceutical ingredient (API) from hypromellose (HPMC) matrices is technologically impossible; therefore, a combination of polymers is required for burst effect reduction. Promising variant could be seen in combination of HPMC and insoluble Eudragits® as water dispersions. These can be applied only on API/insoluble filler mixture as over-wetting prevention. The main hurdle is a limited water absorption capacity (WAC) of filler. Therefore, the object of this study was to investigate the dissolution behavior of levetiracetam from HPMC/Eudragit®NE matrices using magnesium aluminometasilicate (Neusilin® US2) as filler with excellent WAC. Part of this study was also to assess influence of thermal treatment on quality parameters of matrices. The use of Neusilin® allowed the application of Eudragit® dispersion to API/Neusilin® mixture in one step during high-shear wet granulation. HPMC was added extragranularly. Obtained matrices were investigated for qualitative characteristics, NMR solid-state spectroscopy (ssNMR), gel layer dynamic parameters, SEM, and principal component analysis (PCA). Decrease in burst effect (max. of 33.6%) and dissolution rate, increase in fitting to zero-order kinetics, and paradoxical reduction in gel layer thickness were observed with rising Eudragit® NE concentration. The explanation was done by ssNMR, which clearly showed a significant reduction of the API particle size (150-500 nm) in granules as effect of surfactant present in dispersion in dependence on Eudragit®NE amount. This change in API particle size resulted in a significantly larger interface between these two entities. Based on ANOVA and PCA, thermal treatment was not revealed as a useful procedure for this system.
Collapse
|
17
|
Jenczyk J, Woźniak-Budych M, Jarek M, Jurga S. Structural and dynamical study of PDMS and PS based block copolymers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Schneider H, Saalwächter K, Roos M. Complex Morphology of the Intermediate Phase in Block Copolymers and Semicrystalline Polymers As Revealed by 1H NMR Spin Diffusion Experiments. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Horst Schneider
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Matthias Roos
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany St, Cambridge, Massachusetts 02139-4208, United States
| |
Collapse
|
19
|
Sorte EG, Alam TM. 1 H- 19 F REDOR-filtered NMR spin diffusion measurements of domain size in heterogeneous polymers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:1006-1014. [PMID: 28577309 DOI: 10.1002/mrc.4623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1 H-19 F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1 H detection, plus both 1 H➔13 C cross polarization and 1 H➔19 F cross polarization detection schemes. This 1 H-19 F REDOR-filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR-based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR-filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.
Collapse
Affiliation(s)
- Eric G Sorte
- Department of Organic Material Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Todd M Alam
- Department of Organic Material Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
20
|
Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Fávaro de Oliveira F, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017; 357:67-71. [DOI: 10.1126/science.aam8697] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 01/24/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in 1H and 19F NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was ~1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
Collapse
|
21
|
Fritzsching KJ, Mao K, Schmidt-Rohr K. Avoidance of Density Anomalies as a Structural Principle for Semicrystalline Polymers: The Importance of Chain Ends and Chain Tilt. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02000] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith J. Fritzsching
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02453, United States
| | - Kanmi Mao
- ExxonMobil Research and Engineering, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02453, United States
| |
Collapse
|
22
|
Glass transition of soft segments in phase-mixed poly(urethane urea) elastomers by time-domain 1H and 13C solid-state NMR. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Jenczyk J, Jurga S. Complementary studies of NMR spin diffusion and atomic force microscopy – Structural characterization of diblock copolymers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Jayachandrababu KC, Verploegh RJ, Leisen J, Nieuwendaal RC, Sholl DS, Nair S. Structure Elucidation of Mixed-Linker Zeolitic Imidazolate Frameworks by Solid-State 1H CRAMPS NMR Spectroscopy and Computational Modeling. J Am Chem Soc 2016; 138:7325-36. [DOI: 10.1021/jacs.6b02754] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krishna C. Jayachandrababu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Ross J. Verploegh
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Johannes Leisen
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Ryan C. Nieuwendaal
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8550, United States
| | - David S. Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Sankar Nair
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
25
|
Urbanova M, Gajdosova M, Steinhart M, Vetchy D, Brus J. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure–Property Relationships with Solid-State NMR. Mol Pharm 2016; 13:1551-63. [DOI: 10.1021/acs.molpharmaceut.6b00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martina Urbanova
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Marketa Gajdosova
- Veterinary and Pharmaceutical University, Faculty of Pharmacy, Department of Pharmaceutics, Palacky Street 1946/1, 612 42 Brno, Czech Republic
| | - Miloš Steinhart
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - David Vetchy
- Veterinary and Pharmaceutical University, Faculty of Pharmacy, Department of Pharmaceutics, Palacky Street 1946/1, 612 42 Brno, Czech Republic
| | - Jiri Brus
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
26
|
Schäler K, Roos M, Micke P, Golitsyn Y, Seidlitz A, Thurn-Albrecht T, Schneider H, Hempel G, Saalwächter K. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:50-63. [PMID: 26404771 DOI: 10.1016/j.ssnmr.2015.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
We review basic principles of low-resolution proton NMR spin diffusion experiments, relying on mobility differences in nm-sized phases of inhomogeneous organic materials such as block-co- or semicrystalline polymers. They are of use for estimates of domain sizes and insights into nanometric dynamic inhomogeneities. Experimental procedures and limitations of mobility-based signal decomposition/filtering prior to spin diffusion are addressed on the example of as yet unpublished data on semicrystalline poly(ϵ-caprolactone), PCL. Specifically, we discuss technical aspects of the quantitative, dead-time free detection of rigid-domain signals by aid of the magic-sandwich echo (MSE), and magic-and-polarization-echo (MAPE) and double-quantum (DQ) magnetization filters to select rigid and mobile components, respectively. Such filters are of general use in reliable fitting approaches for phase composition determinations. Spin diffusion studies at low field using benchtop instruments are challenged by rather short (1)H T1 relaxation times, which calls for simulation-based analyses. Applying these, in combination with domain sizes as determined by small-angle X-ray scattering, we have determined spin diffusion coefficients D for PCL (0.34, 0.19 and 0.032nm(2)/ms for crystalline, interphase and amorphous parts, respectively). We further address thermal-history effects related to secondary crystallization. Finally, the state of knowledge concerning the connection between D values determined locally at the atomic level, using (13)C detection and CP- or REDOR-based "(1)H hole burning" procedures, and those obtained by calibration experiments, is summarized. Specifically, the non-trivial dependence of D on the magic-angle spinning (MAS) frequency, with a minimum under static and a local maximum under moderate-MAS conditions, is highlighted.
Collapse
Affiliation(s)
- Kerstin Schäler
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Matthias Roos
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Peter Micke
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Yury Golitsyn
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Anne Seidlitz
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Thomas Thurn-Albrecht
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Horst Schneider
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Günter Hempel
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany.
| |
Collapse
|
27
|
Roos M, Micke P, Saalwächter K, Hempel G. Moderate MAS enhances local (1)H spin exchange and spin diffusion. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:28-37. [PMID: 26397218 DOI: 10.1016/j.jmr.2015.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/13/2015] [Accepted: 08/28/2015] [Indexed: 05/17/2023]
Abstract
Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered.
Collapse
Affiliation(s)
- Matthias Roos
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany.
| | - Peter Micke
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Günter Hempel
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany.
| |
Collapse
|
28
|
Zhang R, Ramamoorthy A. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. J Chem Phys 2015; 143:034201. [PMID: 26203019 PMCID: PMC4506299 DOI: 10.1063/1.4926834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 11/14/2022] Open
Abstract
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
29
|
Halse ME, Zagdoun A, Dumez JN, Emsley L. Macroscopic nuclear spin diffusion constants of rotating polycrystalline solids from first-principles simulation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 254:48-55. [PMID: 25828241 DOI: 10.1016/j.jmr.2015.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 05/17/2023]
Abstract
A method for quantitatively calculating nuclear spin diffusion constants directly from crystal structures is introduced. This approach uses the first-principles low-order correlations in Liouville space (LCL) method to simulate spin diffusion in a box, starting from atomic geometry and including both magic-angle spinning (MAS) and powder averaging. The LCL simulations are fit to the 3D diffusion equation to extract quantitative nuclear spin diffusion constants. We demonstrate this method for the case of (1)H spin diffusion in ice and L-histidine, obtaining diffusion constants that are consistent with literature values for (1)H spin diffusion in polymers and that follow the expected trends with respect to magic-angle spinning rate and the density of nuclear spins. In addition, we show that this method can be used to model (13)C spin diffusion in diamond and therefore has the potential to provide insight into applications such as the transport of polarization in non-protonated systems.
Collapse
Affiliation(s)
- Meghan E Halse
- Université de Lyon, Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon1), Centre de RMN à très hauts champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Alexandre Zagdoun
- Université de Lyon, Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon1), Centre de RMN à très hauts champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jean-Nicolas Dumez
- Université de Lyon, Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon1), Centre de RMN à très hauts champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Université de Lyon, Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon1), Centre de RMN à très hauts champs, 5 rue de la Doua, 69100 Villeurbanne, France; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
30
|
Roos M, Schäler K, Seidlitz A, Thurn-Albrecht T, Saalwächter K. NMR study of interphase structure in layered polymer morphologies with mobility contrast: disorder and confinement effects vs. dynamic heterogeneities. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3218-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Rossini AJ, Widdifield CM, Zagdoun A, Lelli M, Schwarzwälder M, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization enhanced NMR spectroscopy for pharmaceutical formulations. J Am Chem Soc 2014; 136:2324-34. [PMID: 24410528 DOI: 10.1021/ja4092038] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional (13)C and (15)N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity (1)H-(15)N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.
Collapse
Affiliation(s)
- Aaron J Rossini
- Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Policianova O, Brus J, Hruby M, Urbanova M, Zhigunov A, Kredatusova J, Kobera L. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR. Mol Pharm 2014; 11:516-30. [PMID: 24417442 DOI: 10.1021/mp400495h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.
Collapse
Affiliation(s)
- Olivia Policianova
- Institute of Macromolecular Chemistry , Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
33
|
Meyer HW, Schneider H, Saalwächter K. Proton NMR spin-diffusion studies of PS-PB block copolymers at low field: two- vs three-phase model and recalibration of spin-diffusion coefficients. Polym J 2012. [DOI: 10.1038/pj.2012.88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Monitoring nuclear spin-flip processes and measuring spin-diffusion constants via hole burning into the magnetization. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.03.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Solid-State Nuclear Magnetic Resonance Spectroscopy: A Review of Modern Techniques and Applications for Inorganic Polymers. J Inorg Organomet Polym Mater 2010. [DOI: 10.1007/s10904-010-9358-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Bonk FA, Caldarelli S, Phan T, Bertin D, Deazevedo ER, Mantovani GL, Bonagamba TJ, Plivelic TS, Torriani IL. Investigation by combined solid-state NMR and SAXS methods of the morphology and domain size in polystyrene-b-
polyethylene oxide-b-
polystyrene triblock copolymers. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/polb.21843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Xu B, Leisen J, Beckham HW, Abu-Zurayk R, Harkin-Jones E, McNally T. Evolution of Clay Morphology in Polypropylene/Montmorillonite Nanocomposites upon Equibiaxial Stretching: A Solid-State NMR and TEM Approach. Macromolecules 2009. [DOI: 10.1021/ma901754m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Singla S, Beckham HW. Miscible Blends of Cyclic Poly(oxyethylene) in Linear Polystyrene. Macromolecules 2008. [DOI: 10.1021/ma800327c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swati Singla
- School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| | - Haskell W. Beckham
- School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| |
Collapse
|
39
|
Takahashi H, Akutsu H, Fujiwara T. A magic-angle-spinning NMR method for H1–H1 distance measurement using coherent polarization transfer in C13-labeled organic solids. J Chem Phys 2008; 129:154504. [DOI: 10.1063/1.2993170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Mauri M, Thomann Y, Schneider H, Saalwächter K. Spin-diffusion NMR at low field for the study of multiphase solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2008; 34:125-141. [PMID: 18692367 DOI: 10.1016/j.ssnmr.2008.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 05/26/2023]
Abstract
The use of spin-diffusion NMR for the measurement of domain sizes in multiphase materials is becoming increasingly popular, in particular for the study of heterogeneous polymers. Under conditions where T(1) relaxation can be neglected, which is mostly the case at high field, analytical and approximate solutions to the evolution of spin diffusion are available. In order to extend the technique to more general conditions, we performed a comprehensive study of the diffusion of magnetization in a model copolymer at low field, where T(1) tends to be of the same order of magnitude as the typical spin-diffusion time. In order to study the effects of T(1) and to delineate the optimal T(1) values for back correction prior to applying the initial-rate approximation, we developed a numerical simulation based on the diffusion equation and including longitudinal relaxation. We present and discuss the limits of simple correction strategies for initial-slope analysis based on apparent relaxation times from saturation-recovery experiments or the spin-diffusion experiments themselves. Our best strategy faithfully reproduces domain sizes obtained by both TEM investigations and full simultaneous fitting of spin-diffusion and saturation-recovery curves. Full fitting of such independent data sets not only yields correct domain sizes, but also the true longitudinal relaxation times, as well as spin-diffusion coefficients. Effects of interphases with distinct mobility on spin-diffusion curves, as well as practical hints concerning the reliable component decomposition of the detected low-resolution FID signal by help of different magnetization filters are also discussed in detail.
Collapse
Affiliation(s)
- M Mauri
- Institut für Physik, Martin-Luther Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06108 Halle, Germany
| | | | | | | |
Collapse
|
41
|
|
42
|
Taylor R, French AD, Gamble GR, Himmelsbach DS, Stipanovic RD, Thibodeaux DP, Wakelyn PJ, Dybowski C. 1H and 13C solid-state NMR of Gossypium barbadense (Pima) cotton. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Meurer B, Weill G. Measurement of Spin Diffusion Coefficients in Glassy Polymers: Failure of a Simple Scaling Law. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200700297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Schmidt-Rohr K, Rawal A, Fang XW. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling. J Chem Phys 2007; 126:054701. [PMID: 17302492 DOI: 10.1063/1.2429069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical particles of up to 10 nm diameter can be characterized quite easily.
Collapse
Affiliation(s)
- K Schmidt-Rohr
- Ames Laboratory, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
45
|
|
46
|
van der Wel PCA, Hu KN, Lewandowski J, Griffin RG. Dynamic Nuclear Polarization of Amyloidogenic Peptide Nanocrystals: GNNQQNY, a Core Segment of the Yeast Prion Protein Sup35p. J Am Chem Soc 2006; 128:10840-6. [PMID: 16910679 DOI: 10.1021/ja0626685] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic nuclear polarization (DNP) permits a approximately 10(2)-10(3) enhancement of the nuclear spin polarization and therefore increases sensitivity in nuclear magnetic resonance (NMR) experiments. Here, we demonstrate the efficient transfer of DNP-enhanced (1)H polarization from an aqueous, radical-containing solvent matrix into peptide crystals via (1)H-(1)H spin diffusion across the matrix-crystal interface. The samples consist of nanocrystals of the amyloid-forming peptide GNNQQNY(7-13), derived from the yeast prion protein Sup35p, dispersed in a glycerol-water matrix containing a biradical polarizing agent, TOTAPOL. These crystals have an average width of 100-200 nm, and their known crystal structure suggests that the size of the biradical precludes its penetration into the crystal lattice; therefore, intimate contact of the molecules in the nanocrystal core with the polarizing agent is unlikely. This is supported by the observed differences between the time-dependent growth of the enhanced polarization in the solvent versus the nanocrystals. Nevertheless, DNP-enhanced magic-angle spinning (MAS) spectra recorded at 5 T and 90 K exhibit an average signal enhancement epsilon approximately 120. This is slightly lower than the DNP enhancement of the solvent mixture surrounding the crystals (epsilon approximately 160), and we show that it is consistent with spin diffusion across the solvent-matrix interface. In particular, we correlate the expected DNP enhancement to several properties of the sample, such as crystal size, the nuclear T(1), and the average (1)H-(1)H spin diffusion constant. The enhanced (1)H polarization was subsequently transferred to (13)C and (15)N via cross-polarization, and allowed rapid acquisition of two-dimensional (13)C-(13)C correlation data.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|