1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Martins V, Xu J, Hung I, Gan Z, Gervais C, Bonhomme C, Huang Y. 17 O solid-state NMR at ultrahigh magnetic field of 35.2 T: Resolution of inequivalent oxygen sites in different phases of MOF MIL-53(Al). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:940-950. [PMID: 33305447 PMCID: PMC8192589 DOI: 10.1002/mrc.5122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 05/09/2023]
Abstract
MIL-53(Al) is a member of the most extensively studied metal-organic framework (MOF) families owing to its "flexible" framework and superior stability. 17 O solid-state NMR (SSNMR) spectroscopy is an ideal site-specific characterization tool as it probes local oxygen environments. Because oxygen local structure is often altered during phase change, 17 O SSNMR can be used to follow phase transitions. However, 17 O is a challenging nucleus to study via SSNMR due to its low sensitivity and resolution arising from the very low natural abundance of 17 O isotope and its quadrupolar nature. In this work, we describe that by using 17 O isotopic enrichment and performing 17 O SSNMR experiments at an ultrahigh magnetic field of 35.2 T, all chemically and crystallographically inequivalent oxygen sites in two representative MIL-53(Al) (as-made and water adsorbed) phases can be completely resolved. The number of signals in each phase is consistent with that predicted from the space group refined from powder X-ray diffraction data. The 17 O 1D magic-angle spinning (MAS) and 2D triple-quantum MAS (3QMAS) spectra at 35.2 T furnish fine information about the host-guest interactions and the structural changes associated with phase transition. The ability to completely resolve multiple chemically and crystallographically inequivalent oxygen sites in MOFs at very high magnetic field, as illustrated in this work, significantly enhances the potential for using the NMR crystallography approach to determine crystal structures of new MOFs and verify the structures of existing MOFs obtained from refining powder X-ray diffraction data.
Collapse
Affiliation(s)
- Vinicius Martins
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Christel Gervais
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Christian Bonhomme
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| |
Collapse
|
3
|
Sulcek L, Langner R, Werner-Zwanziger U, Zwanziger JW, Martineau-Corcos C, Fechtelkord M. Solid-state nuclear magnetic resonance investigation of synthetic phlogopite and lepidolite samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1099-1108. [PMID: 31945203 DOI: 10.1002/mrc.4998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In the present work, our aim is to decipher the cationic ordering in the octahedral and tetrahedral sheets of two Al-rich synthetic materials, namely, phlogopites of nominal composition K(Mg3-x Alx )[Al1+x Si3-x O10 ](OH)y F2-y and lepidolites in the system trilithionite-polylithionite with composition K (Lix Al3-x )[Al4-2x Si2x O10 ](OH)y F2-y , by directly probing the aluminium distribution through 27 Al and 17 O magic-angle spinning, multiple-quantum magic-angle spinning, and 27 Al-27 Al double-quantum single-quantum nuclear magnetic resonance (NMR) experiments. Notably, 27 Al-27 Al double-quantum single-quantum magic-angle spinning NMR spectra, recorded at 9.34 and/or 20.00 T, show the spatial proximity or avoidance of the Al species inside or between the sheets. In both studied minerals, the ensemble of NMR data suggests a preference for [4] Al in the tetrahedral sheet to occupy position close to the [6] Al of the octahedral sheets.
Collapse
Affiliation(s)
- Lara Sulcek
- Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ramona Langner
- Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum, Germany
- Department Technological Analyses and Strategic Planning, Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen (INT), Euskirchen, Germany
| | - Ulrike Werner-Zwanziger
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Clean Technologies Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Josef W Zwanziger
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Clean Technologies Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Charlotte Martineau-Corcos
- ILV, Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, Versailles, France
- CEMHTI UPR CNRS 3079, Université d'Orléans, Orléans, France
| | - Michael Fechtelkord
- Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
4
|
Martins V, Xu J, Wang X, Chen K, Hung I, Gan Z, Gervais C, Bonhomme C, Jiang S, Zheng A, Lucier BEG, Huang Y. Higher Magnetic Fields, Finer MOF Structural Information: 17O Solid-State NMR at 35.2 T. J Am Chem Soc 2020; 142:14877-14889. [PMID: 32786791 DOI: 10.1021/jacs.0c02810] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spectroscopic study of oxygen, a vital element in materials, physical, and life sciences, is of tremendous fundamental and practical importance. 17O solid-state NMR (SSNMR) spectroscopy has evolved into an ideal site-specific characterization tool, furnishing valuable information on the local geometric and bonding environments about chemically distinct and, in some favorable cases, crystallographically inequivalent oxygen sites. However, 17O is a challenging nucleus to study via SSNMR, as it suffers from low sensitivity and resolution, owing to the quadrupolar interaction and low 17O natural abundance. Herein, we report a significant advance in 17O SSNMR spectroscopy. 17O isotopic enrichment and the use of an ultrahigh 35.2 T magnetic field have unlocked the identification of many inequivalent carboxylate oxygen sites in the as-made and activated phases of the metal-organic framework (MOF) α-Mg3(HCOO)6. The subtle 17O spectral differences between the as-made and activated phases yield detailed information about host-guest interactions, including insight into nonconventional O···H-C hydrogen bonding. Such weak interactions often play key roles in the applications of MOFs, such as gas adsorption and biomedicine, and are usually difficult to study via other characterization routes. The power of performing 17O SSNMR experiments at an ultrahigh magnetic field of 35.2 T for MOF characterization is further demonstrated by examining activation of the MIL-53(Al) MOF. The sensitivity and resolution enhanced at 35.2 T allows partially and fully activated MIL-53(Al) to be unambiguously distinguished and also permits several oxygen environments in the partially activated phase to be tentatively identified. This demonstration of the very high resolution of 17O SSNMR recorded at the highest magnetic field accessible to chemists to date illustrates how a broad variety of scientists can now study oxygen-containing materials and obtain previously inaccessible fine structural information.
Collapse
Affiliation(s)
- Vinicius Martins
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaoling Wang
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Kuizhi Chen
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Christel Gervais
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Christian Bonhomme
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Shijia Jiang
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People's Republic of China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Osuna FJ, Pavón E, Alba MD. An insight on the design of mercapto functionalized swelling brittle micas. J Colloid Interface Sci 2020; 561:533-541. [PMID: 31740136 DOI: 10.1016/j.jcis.2019.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022]
Abstract
Surface modification of natural clay minerals with reagents containing metal chelating groups has great environmental value. The functionalization by adsorption or grafting guarantees a durable immobilization of the reactive organic groups, preventing their leaching when they are used in liquid media. The aim of this research was the designed mercapto functionalization of swelling brittle micas, Na-Mn, thorough both chemical and physical mechanisms. Na-Mn were functionalized with 2-mercaptoethylammonium (MEA), 2,3-dimercapto-1-propanol (BAL) and (3-mercaptopropyl)trimethoxysilane (MPTMS). The thiol concentration on swelling brittle micas is higher than the observed value for others adsorbents. The cation exchange reaction with MEA and one-step grafting with MPTMS in acid medium are the most efficient mercapto functionalization mechanism.
Collapse
Affiliation(s)
- Francisco J Osuna
- Instituto Ciencia de los Materiales de Sevilla (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Esperanza Pavón
- Instituto Ciencia de los Materiales de Sevilla (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - María D Alba
- Instituto Ciencia de los Materiales de Sevilla (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|