1
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025:1-20. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Lee J, Lee BK, Gross JM. Brd activity regulates Müller glia-dependent retinal regeneration in zebrafish. Glia 2023; 71:2866-2883. [PMID: 37584502 DOI: 10.1002/glia.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The zebrafish retina possesses tremendous regenerative potential. Müller glia underlie retinal regeneration through their ability to reprogram and generate multipotent neuronal progenitors that re-differentiate into lost neurons. Many factors required for Müller glia reprogramming and proliferation have been identified; however, we know little about the epigenetic and transcriptional regulation of these genes during regeneration. Here, we determined whether transcriptional regulation by members of the Bromodomain (Brd) family is required for Müller glia-dependent retinal regeneration. Our data demonstrate that three brd genes were expressed in Müller glia upon injury. brd2a and brd2b were expressed in all Müller glia and brd4 was expressed only in reprogramming Müller glia. Utilizing (+)-JQ1, a pharmacological inhibitor of Brd function, we demonstrate that transcriptional regulation by Brds plays a critical role in Müller glia reprogramming and regeneration. (+)-JQ1 treatment prevented cell cycle re-entry of Müller glia and the generation of neurogenic progenitors. Modulating the (+)-JQ1 exposure window, we identified the first 48 h post-injury as the time-period during which Müller glia reprogramming occurs. (+)-JQ1 treatments after 48 h post-injury had no effect on the re-differentiation of UV cones, indicating that Brd function is required only for Müller glia reprogramming and not subsequent specification/differentiation events. Brd inhibition also prevented the expression of reprogramming genes like ascl1a and lepb in Müller glia, but not effector genes like mmp9, nor did it affect microglial recruitment after injury. These results demonstrate that transcriptional regulation by Brds plays a critical role during Müller glia-dependent retinal regeneration in zebrafish.
Collapse
Affiliation(s)
- Jiwoon Lee
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Kramer AC, Carthage J, Berry Y, Gurdziel K, Cook TA, Thummel R. A comparative analysis of gene and protein expression in chronic and acute models of photoreceptor degeneration in adult zebrafish. Front Cell Dev Biol 2023; 11:1233269. [PMID: 37745292 PMCID: PMC10512720 DOI: 10.3389/fcell.2023.1233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Adult zebrafish are capable of photoreceptor (PR) regeneration following acute phototoxic lesion (AL). We developed a chronic low light (CLL) exposure model that more accurately reflects chronic PR degeneration observed in many human retinal diseases. Methods: Here, we characterize the morphological and transcriptomic changes associated with acute and chronic models of PR degeneration at 8 time-points over a 28-day window using immunohistochemistry and 3'mRNA-seq. Results: We first observed a differential sensitivity of rod and cone PRs to CLL. Next, we found no evidence for Müller glia (MG) gliosis or regenerative cell-cycle re-entry in the CLL model, which is in contrast to the robust gliosis and proliferative response from resident MG in the AL model. Differential responses of microglia between the models was also observed. Transcriptomic comparisons between the models revealed gene-specific networks of PR regeneration and degeneration, including genes that are activated under conditions of chronic PR stress. Finally, we showed that CLL is at least partially reversible, allowing for rod and cone outer segment outgrowth and replacement of rod cell nuclei via an apparent upregulation of the existing rod neurogenesis mechanism. Discussion: Collectively, these data provide a direct comparison of the morphological and transcriptomic PR degeneration and regeneration models in zebrafish.
Collapse
Affiliation(s)
- Ashley C. Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Justin Carthage
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yasmeen Berry
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Genomic Sciences Core, Wayne State University, Detroit, MI, United States
| | - Tiffany A. Cook
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
4
|
Krylov A, Yu S, Veen K, Newton A, Ye A, Qin H, He J, Jusuf PR. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. Front Mol Neurosci 2023; 16:1087136. [PMID: 37575968 PMCID: PMC10413128 DOI: 10.3389/fnmol.2023.1087136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.
Collapse
Affiliation(s)
- Aaron Krylov
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kellie Veen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel Newton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Qin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Patricia R. Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
6
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Das A, Imanishi Y. Drug Discovery Strategies for Inherited Retinal Degenerations. BIOLOGY 2022; 11:1338. [PMID: 36138817 PMCID: PMC9495580 DOI: 10.3390/biology11091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Dezfuly AR, Safaee A, Amirpour N, Kazemi M, Ramezani A, Jafarinia M, Dehghani A, Salehi H. Therapeutic effects of human adipose mesenchymal stem cells and their paracrine agents on sodium iodate induced retinal degeneration in rats. Life Sci 2022; 300:120570. [DOI: 10.1016/j.lfs.2022.120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
|
9
|
McLaughlin T, Medina A, Perkins J, Yera M, Wang JJ, Zhang SX. Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 2022; 17:25. [PMID: 35346303 PMCID: PMC8962104 DOI: 10.1186/s13024-022-00528-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. Method We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. Results and conclusion We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Andy Medina
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jacob Perkins
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Maria Yera
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA. .,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
10
|
Kramer J, Neves J, Koniikusic M, Jasper H, Lamba DA. Dpp/TGFβ-superfamily play a dual conserved role in mediating the damage response in the retina. PLoS One 2021; 16:e0258872. [PMID: 34699550 PMCID: PMC8547621 DOI: 10.1371/journal.pone.0258872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal homeostasis relies on intricate coordination of cell death and survival in response to stress and damage. Signaling mechanisms that coordinate this process in the adult retina remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila and its mammalian homologue Transforming Growth Factor-beta (TGFβ) superfamily, that includes TGFβ and Bone Morphogenetic Protein (BMP) signaling arms, as central mediators of retinal neuronal death and tissue survival following acute damage. Using a Drosophila model for UV-induced retinal damage, we show that Dpp released from immune cells promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxophone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thickveins/Mad axis promotes tissue repair and survival. This dual role is conserved in the mammalian retina through the TGFβ/BMP signaling, as supplementation of BMP4 or inhibition of TGFβ using small molecules promotes retinal cell survival, while inhibition of BMP negatively affects cell survival after light-induced photoreceptor damage and NMDA induced inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms by which retinal homeostasis is maintained.
Collapse
Affiliation(s)
- Joshua Kramer
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joana Neves
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Lisbon, Portugal
| | - Mia Koniikusic
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States of America
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
11
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
12
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
13
|
Pérez-Dones D, Ledesma-Terrón M, Míguez DG. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines 2021; 9:1222. [PMID: 34572408 PMCID: PMC8471905 DOI: 10.3390/biomedicines9091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the development of the vertebrate retina can be addressed from several perspectives: from a purely qualitative to a more quantitative approach that takes into account its spatio-temporal features, its three-dimensional structure and also the regulation and properties at the systems level. Here, we review the ongoing transition toward a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense, three-dimensional tissues depend strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological samples.
Collapse
Affiliation(s)
- Diego Pérez-Dones
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
14
|
Zhu RL, Fang Y, Yu HH, Chen DF, Yang L, Cho KS. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice. Neural Regen Res 2021; 16:1317-1322. [PMID: 33318411 PMCID: PMC8284269 DOI: 10.4103/1673-5374.301034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Müller cells (MC) are considered dormant retinal progenitor cells in mammals. Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain. It remains unclear whether the lack of ephrin-A2/A3 is sufficient to promote the neurogenic potential of MC. Here we investigated whether the MC is the primary retinal cell type expressing ephrin-A2/A3 and their role on the neurogenic potential of Müller cells. In this study, we showed that ephrin-A2/A3 and their receptor EphA4 were expressed in retina and especially enriched in MC. The level of ephrinAs/EphA4 expression increased as the retina matured that is correlated with the reduced proliferative and progenitor cell potential of MC. Next, we investigated the proliferation in primary MC cultures isolated from wild-type and A2-/- A3-/- mice by 5-ethynyl-2'-deoxyuridine (EdU) incorporation. We detected a significant increase of EdU+ cells in MC derived from A2-/- A3-/- mice. Next, we investigated the role of ephrin-A2/A3 in mice undergoing photoreceptor degeneration such as Rhodopsin knockout (Rho-/-) mice. To further evaluate the role of ephrin-A2/A3 in MC proliferation in vivo, EdU was injected intraperitoneally to adult wild-type, A2-/- A3-/- , Rho-/- and Rho-/- A2-/- A3-/- mice and the numbers of EdU+ cells distributed among different layers of the retina. EphrinAs/EphA4 expression was upregulated in the retina of Rho-/- mice compared to the wild-type mice. In addition, cultured MC derived from ephrin-A2-/- A3-/- mice also expressed higher levels of progenitor cell markers and exhibited higher proliferation potential than those from wild-type mice. Interestingly, we detected a significant increase of EdU+ cells in the retinas of adult ephrin-A2-/- A3-/- mice mainly in the inner nuclear layer; and these EdU+ cells were co-localized with MC marker, cellular retinaldehyde-binding protein, suggesting some proliferating cells are from MC. In Rhodopsin knockout mice (Rho-/- A2-/- A3-/- mice), a significantly greater amount of EdU+ cells were located in the ciliary body, retina and RPE than that of Rho-/- mice. Comparing between 6 and 12 weeks old Rho-/- A2-/- A3-/- mice, we recorded more EdU+ cells in the outer nuclear layer in the 12-week-old mice undergoing severe retinal degeneration. Taken together, Ephrin-A2/A3 are negative regulators of the proliferative and neurogenic potentials of MC. Absence of ephrin-A2/A3 promotes the migration of proliferating cells into the outer nuclear layer and may lead to retinal cell regeneration. All experimental procedures were approved by the Animal Care and Use Committee at Schepens Eye Research Institute, USA (approval No. S-353-0715) on October 24, 2012.
Collapse
Affiliation(s)
- Rui-Lin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yuan Fang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Hua Yu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Dong F. Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Dixon MA, Greferath U, Fletcher EL, Jobling AI. The Contribution of Microglia to the Development and Maturation of the Visual System. Front Cell Neurosci 2021; 15:659843. [PMID: 33967697 PMCID: PMC8102829 DOI: 10.3389/fncel.2021.659843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.
Collapse
Affiliation(s)
- Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol 2021; 21:26. [PMID: 33422026 PMCID: PMC7797095 DOI: 10.1186/s12886-020-01795-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background Stem cell transplantation has been reported as one of the promising strategies to treat retinal degenerative diseases. But, the application and the role of retina stem cells (RSCs) in the treatment of patients with retinal degenerative diseases have not been fully revealed. This study aimed to investigate the potential role of transplantation of the embryo-derived RSCs into the vitreous cavity in repairing the damaged retina in mice. Methods RSCs were isolated from Kunming mice E17 embryonic retina and ciliary body tissues, and labeled with 5-bromo-2’-deoxyuridin (BrdU). Retinal optic nerve crush injury was induced in left eyes in male Kunming mice by ring clamping the optic nerve. The 6th -generation of BrdU-labeled RSCs were transplanted into the damaged retina by the intravitreal injection, and saline injected eyes were used as the control. Hematoxylin and eosin histological staining, and BrdU, Nestin and Pax6 immunostaining were performed. Electroretinogram (ERG) was used for assessing the electrical activity of the retina. Results Embryo-derived RSCs were identified by the positive stains of Pax6 and Nestin. BrdU incorporation was detected in the majority of RSCs. The damaged retina showed cellular nuclear disintegration and fragmentation in the retinal tissue which progressed over the periods of clamping time, and decreased amplitudes of a and b waves in ERG. In the damaged retina with RSCs transplantation, the positive staining for BrdU, Pax6 and Nestin were revealed on the retinal surface. Notably, RSCs migrated into the retinal ganglion cell layer and inner nuclear. Transplanted RSCs significantly elevated the amplitudes of a waves in retina injured eyes. Conclusions Embryonic RSCs have similar characteristics to neural stem cells. Transplantation of RSCs by intravitreal injection would be able to repair the damaged retina.
Collapse
|
17
|
Ke Y, Fan X, Hao R, Dong L, Xue M, Tan L, Yang C, Li X, Ren X. Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Müller cell retrodifferentiation via HSP90. Stem Cell Res Ther 2021; 12:21. [PMID: 33413616 PMCID: PMC7792097 DOI: 10.1186/s13287-020-02034-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Retinal degenerative diseases remain the dominant causes of blindness worldwide, and cell replacement is viewed as a promising therapeutic direction. However, the resources of seed cells are hard to obtain. To further explore this therapeutic approach, human embryonic stem extracellular vesicles (hESEVs) were extracted from human embryonic stem cells (hESCs) to inspect its effect and the possible mechanism on retinal Müller cells and retinal function. Methods hESEVs were extracted by multi-step differential centrifugation, whose morphologies and specific biomarkers (TSG101, CD9, CD63, and CD81) were observed and measured. After hESEVs were injected into the vitreous cavity of RCS rats, the retinal tissues and retinal functions of rats were assessed. The alteration of Müller cells and retinal progenitor cells was also recorded. Microvesicles (MVs) or exosomes (EXOs) were extracted from hESCs transfected with sh-HSP90 or pcDNA3.1-HSP9, and then incubated with Müller cells to measure the uptake of EVs, MVs, or EXOs in Müller cells by immunofluorescence. The retrodifferentiation of Müller cells was determined by measuring Vimentin and CHX10. qRT-PCR and western blot were used to detect HSP90 expression in MVs and evaluate Oct4 level in Müller cells, and Co-IP to inspect the interaction of HSP90 and Oct4. Results RCS rats at the postnatal 30 days had increased retinal progenitor cells which were dedifferentiated from Müller cells. hESEVs were successfully extracted from hESCs, evidenced by morphology observation and positive expressions of specific biomarkers (TSG101, CD9, CD63, and CD81). hESEVs promoted Müller cells dedifferentiated and retrodifferentiated into retinal progenitor cells evidenced by the existence of a large amount of CHX10-positive cells in the retinal inner layer of RCS rats in response to hESEV injection. The promotive role of hESEVs was exerted by MVs demonstrated by elevated fluorescence intensity of CHX10 and suppressed Vimentin fluorescence intensity in MVs rather than in EXOs. HSP90 in MVs inhibited the retrodifferentiation of Müller cells and suppressed the expression level of Oct4 in Müller cells. Co-IP revealed that HSP90 can target Oct4 in Müller cells. Conclusion hESEVs could promote the retrodifferentiation of Müller cells into retinal progenitor cells by regulating the expression of Oct4 in Müller cells by HSP90 mediation in MVs.
Collapse
Affiliation(s)
- Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Xiaoe Fan
- Jincheng People's Hospital, Jincheng, 048000, Shanxi, People's Republic of China
| | - Rui Hao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Min Xue
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei, 230000, Anhui, People's Republic of China
| | - Liangzhang Tan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Chunbo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3 BZ, UK
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No 251, Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
18
|
Peng X, Gao L, Liu Y. Cell-based therapies for age-related macular degeneration: cell replacement versus paracrine effects. Neural Regen Res 2021; 16:1214-1215. [PMID: 33269782 PMCID: PMC8224131 DOI: 10.4103/1673-5374.300443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xiaoyan Peng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ling Gao
- Department of Ophthalmology, Second Affiliated Hospital of Xiangya Medical School, Central South China University, Changsha, Hunan Province, China
| | - Yongqing Liu
- James Graham Brown Cancer Center; Department of Ophthalmology and Visual Sciences; Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
19
|
Niu L, Fang Y, Yao X, Zhang Y, Wu J, Chen DF, Sun X. TNFα activates MAPK and Jak-Stat pathways to promote mouse Müller cell proliferation. Exp Eye Res 2020; 202:108353. [PMID: 33171193 DOI: 10.1016/j.exer.2020.108353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Mouse Müller cells, considered as dormant retinal progenitors, often respond to retinal injury by undergoing reactive gliosis rather than displaying neural regenerative responses. Tumor necrosis factor alpha (TNFα) is a key cytokines induced after injury and implicated in mediating inflammatory and neural regenerative responses in zebrafish. To investigate the involvement of TNFα in mouse retinal injury, adult C57BL/6J mice were subjected to light damage for 14 consecutive days. TNFα was elevated in the retina of mice exposed to light damage, which induced Müller cell proliferation in vitro. Affymetrix microarray showed that, in Müller cells, TNFα induces up-regulation of inflammatory and proliferation-related genes, including NFKB2, leukemia inhibitory factor, interleukin-6, janus kinase (Jak) 1, Jak2, signal transducer and activator of transcription (Stat) 1, Stat2, mitogen-activated protein kinase (MAPK) 7, and MAP4K4 but down-regulation of neuroprogenitor genes, including Sox9, Ascl1, Wnt2 and Hes1. Blocking the Jak/Stat and MAPK pathways attenuated TNFα-induced Müller cell proliferation. These results suggest that TNFα may drive the proliferation and inflammatory response, rather than the neural regenerative potential, of mouse Müller cells.
Collapse
Affiliation(s)
- Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Fang
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Xiaoqian Yao
- Department of Ophthalmology, Jin Shan Hospital, Fudan University, Shanghai 200540, China
| | - Yi Zhang
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Grigoryan EN. Potential Endogenous Cell Sources for Retinal Regeneration in Vertebrates and Humans: Progenitor Traits and Specialization. Biomedicines 2020; 8:E208. [PMID: 32664635 PMCID: PMC7400588 DOI: 10.3390/biomedicines8070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal diseases often cause the loss of photoreceptor cells and, consequently, impairment of vision. To date, several cell populations are known as potential endogenous retinal regeneration cell sources (RRCSs): the eye ciliary zone, the retinal pigment epithelium, the iris, and Müller glia. Factors that can activate the regenerative responses of RRCSs are currently under investigation. The present review considers accumulated data on the relationship between the progenitor properties of RRCSs and the features determining their differentiation. Specialized RRCSs (all except the ciliary zone in low vertebrates), despite their differences, appear to be partially "prepared" to exhibit their plasticity and be reprogrammed into retinal neurons due to the specific gene expression and epigenetic landscape. The "developmental" characteristics of RRCS gene expression are predefined by the pathway by which these cell populations form during eye morphogenesis; the epigenetic features responsible for chromatin organization in RRCSs are under intracellular regulation. Such genetic and epigenetic readiness is manifested in vivo in lower vertebrates and in vitro in higher ones under conditions permissive for cell phenotype transformation. Current studies on gene expression in RRCSs and changes in their epigenetic landscape help find experimental approaches to replacing dead cells through recruiting cells from endogenous resources in vertebrates and humans.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
21
|
Palazzo I, Deistler K, Hoang TV, Blackshaw S, Fischer AJ. NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina. Development 2020; 147:dev.183418. [PMID: 32291273 DOI: 10.1242/dev.183418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Retinal regeneration is robust in some cold-blooded vertebrates, but this process is ineffective in warm-blooded vertebrates. Understanding the mechanisms that suppress the reprogramming of Müller glia into neurogenic progenitors is key to harnessing the regenerative potential of the retina. Inflammation and reactive microglia are known to influence the formation of Müller glia-derived progenitor cells (MGPCs), but the mechanisms underlying this interaction are unknown. We used a chick in vivo model to investigate nuclear factor kappa B (NF-κB) signaling, a critical regulator of inflammation, during the reprogramming of Müller glia into proliferating progenitors. We find that components of the NF-κB pathway are dynamically regulated by Müller glia after neuronal damage or treatment with growth factors. Inhibition of NF-κB enhances, whereas activation suppresses, the formation of proliferating MGPCs. Following microglia ablation, the effects of NF-κB-agonists on MGPC-formation are reversed, suggesting that signals provided by reactive microglia influence how NF-κB impacts Müller glia reprogramming. We propose that NF-κB is an important signaling 'hub' that suppresses the reprogramming of Müller glia into proliferating MGPCs and this 'hub' coordinates signals provided by reactive microglia.
Collapse
Affiliation(s)
- Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Deistler
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Tronov VA, Nekrasova EI. DNA Damage and p53 Restrict Proliferation of Müller Cells in the Mouse Retina in Response to the Influence of N-Methyl-N-Nitrosourea. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Looking into dental pulp stem cells in the therapy of photoreceptors and retinal degenerative disorders. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111727. [PMID: 31862637 DOI: 10.1016/j.jphotobiol.2019.111727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023]
Abstract
Blindness and vision impairment are caused by irremediable retinal degeneration in affected individuals worldwide. Cell therapy for a retinal replacement can potentially rescue their vision, specifically for those who lost the light sensing photoreceptors in the eye. As such, well-characterized retinal cells are required for the replacement purposes. Stem cell-based therapy in photoreceptor and retinal pigment epithelium transplantation is well received, however, the drawbacks of retinal transplantation is the limited clinical protocols development, insufficient number of transplanted cells for recovery, the selection of potential stem cell sources that can be differentiated into the target cells, and the ability of cells to migrate to the host tissue. Dental pulp stem cells (DPSC) belong to a subset of mesenchymal stem cells, and are recently being studied due to its high capability of differentiating into cells of the neuronal lineage. In this review, we look into the potential uses of DPSC in treating retinal degeneration, and also the current data supporting its application.
Collapse
|
24
|
Pena CD, Zhang S, Majeska R, Venkatesh T, Vazquez M. Invertebrate Retinal Progenitors as Regenerative Models in a Microfluidic System. Cells 2019; 8:cells8101301. [PMID: 31652654 PMCID: PMC6829900 DOI: 10.3390/cells8101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insufficient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to our understanding of retinogenesis and the development of effective, cell-based approaches to retinal replacement. The current article describes a new bio-engineering approach to investigate the migratory responses of innate collections of RPCs upon extracellular substrates by combining microfluidics with the well-established invertebrate model of Drosophila melanogaster. Experiments utilized microfluidics to investigate how the composition, size, and adhesion of RPC clusters on defined extracellular substrates affected migration to exogenous chemotactic signaling. Results demonstrated that retinal cluster size and composition influenced RPC clustering upon extracellular substrates of concanavalin (Con-A), Laminin (LM), and poly-L-lysine (PLL), and that RPC cluster size greatly altered collective migratory responses to signaling from Fibroblast Growth Factor (FGF), a primary chemotactic agent in Drosophila. These results highlight the significance of examining collective cell-biomaterial interactions on bio-substrates of emerging biomaterials to aid directional migration of transplanted cells. Our approach further introduces the benefits of pairing genetically controlled models with experimentally controlled microenvironments to advance cell replacement therapies.
Collapse
Affiliation(s)
- Caroline D Pena
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Stephanie Zhang
- Department of Biomedical Engineering, The State University of New York at Binghamton, NY 13902, USA.
| | - Robert Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Tadmiri Venkatesh
- Department of Biology, City College of New York, New York, NY 10031, USA.
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08854, USA.
| |
Collapse
|
25
|
Epigenetics in neuronal regeneration. Semin Cell Dev Biol 2019; 97:63-73. [PMID: 30951894 DOI: 10.1016/j.semcdb.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Damage to neuronal tissues in mammals leads to permanent loss of tissue function that can have major health consequences. While mammals have no inherent regenerative capacity to functionally repair neuronal tissue, other species such as amphibians and teleost fish readily replace damaged tissue. The exploration of development and native regeneration can thus inform the process of inducing regeneration in non-regenerative systems, which can be used to develop new therapeutics. Increasing evidence points to an epigenetic component in the regulation of the changes in cellular gene expression necessary for regeneration. In this review, we compare evidence of epigenetic roles in development and regeneration of neuronal tissue. We have focused on three key systems of important clinical significance: the neural retina, the inner ear, and the spinal cord in regenerative and non-regenerative species. While evidence for epigenetic regulation of regeneration is still limited, changes in DNA accessibility, histone acetylation and DNA methylation have all emerged as key elements in this process. To date, most studies have used broadly acting experimental manipulations to establish a role for epigenetics in regeneration, but the advent of more targeted approaches to modify the epigenome will be critical to dissecting the relative contributions of these regulatory factors in this process and the development of methods to stimulate the regeneration in those organisms like ourselves where only limited regeneration occurs in these neural systems.
Collapse
|
26
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M. The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Adv Healthc Mater 2018; 7:e1800226. [PMID: 30175520 DOI: 10.1002/adhm.201800226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/16/2018] [Indexed: 12/21/2022]
Abstract
The prevalence of degenerative retinal disease is ever increasing as life expectancy rises globally. The human retina fails to regenerate and the use of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) to engineer retinal tissue is of particular interest due to the limited availability of suitable allogeneic or autologous tissue. Retinal tissue and its development are well characterized, which have resulted in robust assays to assess the development of tissue-engineered retina. Retinal tissue can be generated in vitro from hESCs and hiPSCs without biomaterial scaffolds, but despite advancements, protocols remain slow, expensive, and fail to result in mature functional tissue. Several recent studies have demonstrated the potential of biomaterial scaffolds to enhance generation of hESC/hiPSC-derived retinal tissue, including synthetic polymers, silk, alginate, hyaluronic acid, and extracellular matrix molecules. This review outlines the advances that have been made toward tissue-engineered neural retina and retinal pigment epithelium (RPE) for clinical application in recent years, including the success of clinical trials involving transplantation of cells and tissue to promote retinal repair; and the evidence from in vitro and animal studies that biomaterials can enhance development and integration of retinal tissue.
Collapse
Affiliation(s)
- Nicola C. Hunt
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Dean Hallam
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Valeria Chichagova
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
- Biomedicine WestInternational Centre for LifeTimes SquareNewcastle upon Tyne NE1 4EP UK
| | - David H. Steel
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Majlinda Lako
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| |
Collapse
|
28
|
Vancamp P, Bourgeois NMA, Houbrechts AM, Darras VM. Knockdown of the thyroid hormone transporter MCT8 in chicken retinal precursor cells hampers early retinal development and results in a shift towards more UV/blue cones at the expense of green/red cones. Exp Eye Res 2018; 178:135-147. [PMID: 30273578 DOI: 10.1016/j.exer.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
Thyroid hormones (THs) play a crucial role in coordinating brain development in vertebrates. They fine-tune processes like cell proliferation, migration, and differentiation mainly by regulating the transcriptional activity of many essential genes. Regulators of TH availability thereby define the cellular concentration of the bioactive 3,5,3'-triiodothyronine, which binds to nuclear TH receptors. One important regulator, the monocarboxylate transporter 8 (MCT8), facilitates cellular TH uptake and is known to be necessary for correct brain development, but data on its potential role during retinal development is lacking. The retinal cyto-architecture has been conserved throughout vertebrate evolution, and we used the chicken embryo to study the need for MCT8 during retinal development. Its external development allows easy manipulation, and MCT8 is abundantly expressed in the retina from early stages onwards. We induced MCT8 knockdown by electroporating a pRFP-MCT8-RNAi vector into the retinal precursor cells (RPCs) at embryonic day 4 (E4), and studied the consequences for early (E6) and late (E18) retinal development. The empty pRFP-RNAi vector was used as a control. RPC proliferation was reduced at E6. This resulted in cellular hypoplasia and a thinner retina at E18 where mainly photoreceptors and horizontal cells were lost, the two predominant cell types that are born around the stage of electroporation. At E6, differentiation into retinal ganglion cells and amacrine cells was delayed. However, since the proportion of a given cell type within the transfected cell population at E18 was similar in knockdown and controls, the partial loss of some cell types was most-likely due to reduced RPC proliferation and not impaired cell differentiation. Photoreceptors displayed delayed migration at first, but had successfully reached the outer nuclear layer at E18. However, they increasingly differentiated into short wavelength-sensitive cones at the expense of medium/long wavelength-sensitive cones, while the proportion of rods was unaltered. Improperly formed sublaminae in the inner plexiform layer additionally suggested defects in synaptogenesis. Altogether, our data echoes effects of hypothyroidism and the loss of some other regulators of TH availability in the developing zebrafish and rodent retina. Therefore, the expression of MCT8 in RPCs is crucial for adequate TH uptake during cell type-specific events in retinal development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
29
|
mTORC1 accelerates retinal development via the immunoproteasome. Nat Commun 2018; 9:2502. [PMID: 29950673 PMCID: PMC6021445 DOI: 10.1038/s41467-018-04774-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/26/2018] [Indexed: 11/26/2022] Open
Abstract
The numbers and types of cells constituting vertebrate neural tissues are determined by cellular mechanisms that couple neurogenesis to the proliferation of neural progenitor cells. Here we identified a role of mammalian target of rapamycin complex 1 (mTORC1) in the development of neural tissue, showing that it accelerates progenitor cell cycle progression and neurogenesis in mTORC1-hyperactive tuberous sclerosis complex 1 (Tsc1)-deficient mouse retina. We also show that concomitant loss of immunoproteasome subunit Psmb9, which is induced by Stat1 (signal transducer and activator of transcription factor 1), decelerates cell cycle progression of Tsc1-deficient mouse retinal progenitor cells and normalizes retinal developmental schedule. Collectively, our results establish a developmental role for mTORC1, showing that it promotes neural development through activation of protein turnover via a mechanism involving the immunoproteasome. One of the determinants of the neuronal subtype produced from retinal progenitor cells is their proliferative potential. Here the authors show that mTORC1 promotes progenitor cell cycle progression and hence accelerated development in mouse retina through induction of the immunoproteasome which enhances the degradation of cyclins.
Collapse
|
30
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
31
|
Ultrastructural Changes and Expression of PCNA and RPE65 in Sodium Iodate-Induced Acute Retinal Pigment Epithelium Degeneration Model. Neurochem Res 2018; 43:1010-1019. [DOI: 10.1007/s11064-018-2508-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/30/2023]
|
32
|
Tirassa P, Rosso P, Iannitelli A. Ocular Nerve Growth Factor (NGF) and NGF Eye Drop Application as Paradigms to Investigate NGF Neuroprotective and Reparative Actions. Methods Mol Biol 2018; 1727:19-38. [PMID: 29222770 DOI: 10.1007/978-1-4939-7571-6_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The eye is a central nervous system structure that is uniquely accessible to local treatment. Through the ocular surface, it is possible to access the retina, optic nerve, and brain. Animal models of retina degeneration or optic nerve crush could thus serve as tools to investigate whether and how factors, which are anterogradely or retrogradely transported through the optic nerve, might contribute to activate neuroprotection and eventually regeneration. Among these factors, nerve growth factor (NGF) plays a crucial role during development of the visual system, as well as during the entire life span, and in pathological conditions. The ability of NGF to exert survival and trophic actions on the retina and brain cells when applied intraocularly and topically as eye drops is critically reviewed here, together with the effects of ocular neurotrophins on neuronal pathways influencing body rhythm, cognitions, and behavioral functions. The latest data from animal models and humans are presented, and the mechanism of action of ocularly administered NGF is discussed. NGF eye drops are proposed as an experimental strategy to investigate the role and cellular targets of neurotrophins in the mechanism(s) underlying neurodegeneration/regeneration and their involvement in the regulation of neurological and behavioral dysfunctions.
Collapse
Affiliation(s)
- Paola Tirassa
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.
| | - Pamela Rosso
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.,Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Angela Iannitelli
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
33
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|
34
|
Ji HP, Xiong Y, Song WT, Zhang ED, Gao ZL, Yao F, Su T, Zhou RR, Xia XB. MicroRNA-28 potentially regulates the photoreceptor lineage commitment of Müller glia-derived progenitors. Sci Rep 2017; 7:11374. [PMID: 28900179 PMCID: PMC5595954 DOI: 10.1038/s41598-017-11112-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/18/2017] [Indexed: 12/29/2022] Open
Abstract
Retinal degenerative diseases ultimately result into irreversible photoreceptor death or loss. At present, the most promising treatment for these diseases is cell replacement therapy. Müller glia are the major glia in the retina, displaying cardinal features of retinal progenitor cells, and can be candidate of seed cells for retinal degenerative diseases. Here, mouse retinal Müller glia dissociated and cultured in vitro amplified and were dedifferentiated into Müller glia-derived progenitors (MGDPs), demonstrating expression of stem/progenitor cell markers Nestin, Sox2 and self-renewal capacity. MicroRNAs (miRNAs) play unique roles in the retinogenesis, so we hypothesized miRNAs would contribute to photoreceptor lineage commitment of MGDPs. By TargetScan, Miranda, and Pictar bioinformatics, gain/loss-of-function models, dual luciferase assay, we identified and validated that miR-28 targeted the photoreceptor-specific CRX transcription factor. Anti-miR-28 could induce MGDPs to differentiate into neurons strongly expressing CRX and Rhodopsin, while miR-28 mimic suppressed CRX and Rhodopsin expression. Knockdown of CRX by siRNA blocked the expression of CRX and Rhodospin upregulated by anti-miR-28, indicating that anti-miR-28 potentially induced photoreceptor commitment of MGDPs by targeting CRX, but more experiments are necessary to confirm their role in differentiation.
Collapse
Affiliation(s)
- Hong-Pei Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Departemnt of Ophthalmology, The People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Yu Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - En-Dong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao-Lin Gao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Su
- Department of Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rong-Rong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
35
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
36
|
Ezati R, Etemadzadeh A, Soheili ZS, Samiei S, Ranaei Pirmardan E, Davari M, Najafabadi HS. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study. J Cell Physiol 2017; 233:1222-1235. [PMID: 28480968 DOI: 10.1002/jcp.25991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
Abstract
Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells.
Collapse
Affiliation(s)
- Razie Ezati
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Azadeh Etemadzadeh
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Malihe Davari
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hoda Shams Najafabadi
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
37
|
Canto-Soler V, Flores-Bellver M, Vergara MN. Stem Cell Sources and Their Potential for the Treatment of Retinal Degenerations. Invest Ophthalmol Vis Sci 2017; 57:ORSFd1-9. [PMID: 27116661 PMCID: PMC6892419 DOI: 10.1167/iovs.16-19127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer unprecedented opportunities for the development of strategies geared toward the treatment of retinal degenerative diseases. A variety of cellular sources have been investigated for various potential clinical applications, including tissue regeneration, disease modeling, and screening for non–cell-based therapeutic agents. As the field transitions from more than a decade of preclinical research to the first phase I/II clinical trials, we provide a concise overview of the stem cell sources most commonly used, weighing their therapeutic potential on the basis of their technical strengths/limitations, their ethical implications, and the extent of the progress achieved to date. This article serves as a framework for further in-depth analyses presented in the following chapters of this Special Issue.
Collapse
|
38
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
39
|
Experimental Study of the Biological Properties of Human Embryonic Stem Cell-Derived Retinal Progenitor Cells. Sci Rep 2017; 7:42363. [PMID: 28205557 PMCID: PMC5304228 DOI: 10.1038/srep42363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/09/2017] [Indexed: 01/16/2023] Open
Abstract
Retinal degenerative diseases are among the leading causes of blindness worldwide, and cell replacement is considered as a promising therapeutic. However, the resources of seed cells are scarce. To further explore this type of therapy, we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore, we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats. We quantified the thickness of the treated rats' outer nuclear layers (ONLs) and explored the visual function via electroretinography (ERG). It was found that the differentiated cells expressed RPC markers and photoreceptor progenitor markers. The transplanted RPCs survived for at least 12 weeks, resulting in beneficial effects on the morphology of the host retina, and led to a significant improvement in the visual function of the treated animals. These therapeutic effects suggest that the hESCs-derived RPCs could delay degeneration of the retina and partially restore visual function.
Collapse
|
40
|
Yun C, Oh J, Lee B, Lee JM, Ariunaa T, Huh K. Generation of Retinal Progenitor Cells from Human Induced Pluripotent Stem Cell-Derived Spherical Neural Mass. Tissue Eng Regen Med 2017; 14:39-47. [PMID: 30603460 DOI: 10.1007/s13770-016-0021-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 10/20/2022] Open
Abstract
Spherical neural mass (SNM) is a mass of neural precursors that have been used to generate neuronal cells with advantages of long-term passaging capability with high yield, easy storage, and thawing. In this study, we differentiated neural retinal progenitor cells (RPCs) from human induced pluripotent stem cells (hiPSC)-derived SNMs. RPCs were differentiated from SNMs with a noggin/fibroblast growth factor-basic/Dickkopf-1/Insulin-like growth factor-1/fibroblast growth factor-9 protocol for three weeks. Human RPCs expressed eye field markers (Paired box 6) and early neural retinal markers (Ceh-10 homeodomain containing homolog), but did not photoreceptor marker (Opsin 1 short-wave-sensitive). Reverse transcription polymerase chain reaction revealed that early neural retinal markers (Mammalian achaete-scute complex homolog 1, mouse atonal homolog 5, neurogenic differentiation 1) and retinal fate markers (brain-specific homeobox/POU domain transcription factor 3B and recoverin) were upregulated, while the marker of retinal pigment epithelium (microphthalmia-associated transcription factor) only showed slight upregulation. Human RPCs were transplanted into mouse (adult 8 weeks old C57BL/6) retina. Cells transplanted into the mouse retina matured and expressed markers of mature retinal cells (Opsin 1 short-wave-sensitive) and human nuclei on immunohistochemistry three months after transplantation. Development of RPCs using SNMs may offer a fast and useful method for neural retinal cell differentiation.
Collapse
Affiliation(s)
- Cheolmin Yun
- 1Department of Ophthalmology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Sungbuk-gu, Seoul, 136-705 Korea
| | - Jaeryung Oh
- 1Department of Ophthalmology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Sungbuk-gu, Seoul, 136-705 Korea
| | - Boram Lee
- 1Department of Ophthalmology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Sungbuk-gu, Seoul, 136-705 Korea
| | - Ja-Myong Lee
- 2Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Togloom Ariunaa
- 1Department of Ophthalmology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Sungbuk-gu, Seoul, 136-705 Korea
| | - Kuhl Huh
- 1Department of Ophthalmology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Sungbuk-gu, Seoul, 136-705 Korea
| |
Collapse
|
41
|
Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta 2016; 464:160-164. [PMID: 27876464 DOI: 10.1016/j.cca.2016.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement.
Collapse
Affiliation(s)
- Annu Chohan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Singh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
42
|
Ranaei Pirmardan E, Soheili ZS, Samiei S, Ahmadieh H, Mowla SJ, Ezzati R, Naseri M. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments. Exp Cell Res 2016; 347:332-8. [DOI: 10.1016/j.yexcr.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
|
43
|
Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int J Mol Sci 2016; 17:ijms17091584. [PMID: 27657046 PMCID: PMC5037849 DOI: 10.3390/ijms17091584] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.
Collapse
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
44
|
Zhang S, Mu Z, He C, Zhou M, Liu D, Zhao XF, Goldman D, Xu H. Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia-Derived Progenitors During Zebrafish Retinal Regeneration. Invest Ophthalmol Vis Sci 2016; 57:1991-2000. [PMID: 27096757 PMCID: PMC4849886 DOI: 10.1167/iovs.15-18669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effect of the antiviral drug ganciclovir (GCV) on Müller glia dedifferentiation and proliferation and the underlying cellular and molecular mechanisms in adult zebrafish. Methods A Tg(1016tuba1a:GFP) transgenic line was generated to identify injury-induced dedifferentiation of Müller glia. Mechanical retinal damage was induced by a needle-poke injury on the back of the eyes in adult zebrafish. Phosphate-buffered saline or GCV was injected into the vitreous of the eye at the time of injury or through the cornea. The GCV clearance rate from the eye was determined by a reversed-phase HPLC method. Green fluorescent protein (GFP) and bromodeoxyuridine (BrdU) immunofluorescence were used to determine the effect of GCV on retinal regeneration. Cell apoptosis was evaluated by TUNEL staining. Microglia were labeled by vitreous injection of isolectin IB4 conjugates. Quantitative (q)PCR and Western blot analysis were used to determine gene expression in the retina. Results Ganciclovir treatment significantly reduced the number of BrdU+ Müller glia–derived progenitor cells (MGPCs) at 4 days post injury. Further analysis showed that GCV had no impact on Müller glia dedifferentiation and the initial formation of MGPCs. Our data indicate that GCV irreversibly inhibited MGPC proliferation likely through a p53-p21cip1–dependent pathway. Interestingly, unlike control cells, GCV-treated Müller glia cells were “locked” in a prolonged dedifferentiated state. Conclusions Our study uncovered a novel inhibitory effect of GCV on MGPC proliferation and suggests its potential use as a tool to uncover molecular mechanisms underlying retinal regeneration in zebrafish.
Collapse
Affiliation(s)
- Shuqiang Zhang
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoxia Mu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chunjiao He
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Minmin Zhou
- College of Biological Science, Nantong University, Nantong, Jiangsu Province, China
| | - Dong Liu
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States
| | - Hui Xu
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
45
|
Additive reductions in zebrafish PRPS1 activity result in a spectrum of deficiencies modeling several human PRPS1-associated diseases. Sci Rep 2016; 6:29946. [PMID: 27425195 PMCID: PMC4947902 DOI: 10.1038/srep29946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023] Open
Abstract
Phosphoribosyl pyrophosphate synthetase-1 (PRPS1) is a key enzyme in nucleotide biosynthesis, and mutations in PRPS1 are found in several human diseases including nonsyndromic sensorineural deafness, Charcot-Marie-Tooth disease-5, and Arts Syndrome. We utilized zebrafish as a model to confirm that mutations in PRPS1 result in phenotypic deficiencies in zebrafish similar to those in the associated human diseases. We found two paralogs in zebrafish, prps1a and prps1b and characterized each paralogous mutant individually as well as the double mutant fish. Zebrafish prps1a mutants and prps1a;prps1b double mutants showed similar morphological phenotypes with increasingly severe phenotypes as the number of mutant alleles increased. Phenotypes included smaller eyes and reduced hair cell numbers, consistent with the optic atrophy and hearing impairment observed in human patients. The double mutant also showed abnormal development of primary motor neurons, hair cell innervation, and reduced leukocytes, consistent with the neuropathy and recurrent infection of the human patients possessing the most severe reductions of PRPS1 activity. Further analyses indicated the phenotypes were associated with a prolonged cell cycle likely resulting from reduced nucleotide synthesis and energy production in the mutant embryos. We further demonstrated the phenotypes were caused by delays in the tissues most highly expressing the prps1 genes.
Collapse
|
46
|
Noh H, Lee H, Park E, Park S. Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development 2016; 143:461-72. [PMID: 26839344 DOI: 10.1242/dev.129478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of complex organs such as the eye requires a delicate and coordinated balance of cell division and cell death. Although apoptosis is prevalent in the proximoventral optic cup, the precise role it plays in eye development needs to be investigated further. In this study, we show that reduced apoptosis in the proximoventral optic cup prevents closure of the optic fissure. We also show that expression of ephrin A5 (Efna5) partially overlaps with Eph receptor B2 (Ephb2) expression in the proximoventral optic cup and that binding of EphB2 to ephrin A5 induces a sustained activation of JNK. This prolonged JNK signal promotes apoptosis and prevents cell proliferation. Thus, we propose that the unique cross-subclass interaction of EphB2 with ephrin A5 has evolved to function upstream of JNK signaling for the purpose of maintaining an adequate pool of progenitor cells to ensure proper closure of the optic fissure.
Collapse
Affiliation(s)
- Hyuna Noh
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Haeryung Lee
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Eunjeong Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Soochul Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| |
Collapse
|
47
|
Powell C, Cornblath E, Elsaeidi F, Wan J, Goldman D. Zebrafish Müller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons. Sci Rep 2016; 6:24851. [PMID: 27094545 PMCID: PMC4837407 DOI: 10.1038/srep24851] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022] Open
Abstract
Unlike mammals, zebrafish can regenerate a damaged retina. Key to this regenerative response are Müller glia (MG) that respond to injury by reprogramming and adopting retinal stem cell properties. These reprogrammed MG divide to produce a proliferating population of retinal progenitors that migrate to areas of retinal damage and regenerate lost neurons. Previous studies have suggested that MG-derived progenitors may be biased to produce that are lost with injury. Here we investigated MG multipotency using injury paradigms that target different retinal nuclear layers for cell ablation. Our data indicate that regardless of which nuclear layer was damaged, MG respond by generating multipotent progenitors that migrate to all nuclear layers and differentiate into layer-specific cell types, suggesting that MG-derived progenitors in the injured retina are intrinsically multipotent. However, our analysis of progenitor proliferation reveals a proliferative advantage in nuclear layers where neurons were ablated. This suggests that feedback inhibition from surviving neurons may skew neuronal regeneration towards ablated cell types.
Collapse
Affiliation(s)
- Curtis Powell
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Eli Cornblath
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Fairouz Elsaeidi
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jin Wan
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
48
|
Lust K, Sinn R, Pérez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development 2016; 143:1874-83. [PMID: 27068106 PMCID: PMC4920165 DOI: 10.1242/dev.135905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
Regenerative responses in the vertebrate CNS depend on quiescent radial glia stem cells, which re-enter the cell cycle and eventually differentiate into neurons. The entry into the cell cycle and the differentiation into neurons are events of opposite nature, and therefore efforts to force quiescent radial glia into neurons require different factors. Here, we use fish to show that a single neurogenic factor, Atoh7, directs retinal radial glia (Müller glia, MG) into proliferation. The resulting neurogenic clusters differentiate in vivo into various retinal neurons. We use signaling reporters to demonstrate that the Atoh7-induced regeneration-like response of MG cells is mimicked by Notch, resembling the behavior of early progenitors during retinogenesis. Activation of Notch signaling in MG cells is sufficient to trigger proliferation and differentiation. Our results uncover a new role for Atoh7 as a universal neurogenic factor, and illustrate how signaling modules are re-employed in diverse contexts to trigger different biological responses. Highlighted article: Induced activation of atoh7 in Müller glia cells in vivo is sufficient to drive cell cycle re-entry and proliferation, followed by the formation of neurogenic clusters and de novo neurogenesis.
Collapse
Affiliation(s)
- Katharina Lust
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Rebecca Sinn
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Alicia Pérez Saturnino
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| |
Collapse
|
49
|
Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells. PLoS One 2016; 11:e0150758. [PMID: 26985665 PMCID: PMC4795653 DOI: 10.1371/journal.pone.0150758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene.
Collapse
|
50
|
Gardiner KL, Downs L, Berta-Antalics AI, Santana E, Aguirre GD, Genini S. Photoreceptor proliferation and dysregulation of cell cycle genes in early onset inherited retinal degenerations. BMC Genomics 2016; 17:221. [PMID: 26969498 PMCID: PMC4788844 DOI: 10.1186/s12864-016-2477-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mitotic terminally differentiated photoreceptors (PRs) are observed in early retinal degeneration (erd), an inherited canine retinal disease driven by mutations in the NDR kinase STK38L (NDR2). Results We demonstrate that a similar proliferative response, but of lower magnitude, occurs in two other early onset disease models, X-linked progressive retinal atrophy 2 (xlpra2) and rod cone dysplasia 1 (rcd1). Proliferating cells are rod PRs, and not microglia or Müller cells. Expression of the cell cycle related genes RB1 and E2F1 as well as CDK2,4,6 was up-regulated, but changes were mutation-specific. Changes in cyclin expression differed across all genes, diseases and time points analyzed, although CCNA1 and CCNE1 expression increased with age in the three models suggesting that there is a dysregulation of cell cycle gene expression in all three diseases. Unique to erd, however, are mutation-specific changes in the expression of NDR kinases and Hippo signaling members with increased expression of MOB1 and LATS1 in the newly generated hybrid rod/S-cones. Conclusions Our data raise the intriguing possibility that terminally differentiated normal PRs are kept from dividing by NDR2-MOB1 interaction. Furthermore, they provide the framework for the selection of candidate genes for further investigation as potential targets of therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2477-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin L Gardiner
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Louise Downs
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Agnes I Berta-Antalics
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA.,Augenklinik Uniklinik Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Evelyn Santana
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Sem Genini
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|