1
|
Zhou H, Skolnick J. Utility of the Morgan Fingerprint in Structure-Based Virtual Ligand Screening. J Phys Chem B 2024; 128:5363-5370. [PMID: 38783525 PMCID: PMC11163432 DOI: 10.1021/acs.jpcb.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In modern drug discovery, virtual ligand screening (VLS) is frequently applied to identify possible hits before experimental testing and refinement due to its cost-effective nature for large compound libraries. For decades, efforts have been devoted to developing VLS methods with high accuracy. These include the state-of-the-art FINDSITE suite of approaches FINDSITEcomb2.0, FRAGSITE, and FRAGSITE2 and the meta version FRAGSITEcomb that were developed in our lab. These methods combine ligand homology modeling (LHM), traditional ligand similarity methods, and more recently machine learning approaches to rank ligands and have proven to be superior to most recent deep learning and large language model-based approaches. Here, we describe further improvements to our previous best methods by combining the Morgan fingerprint (MF) with the originally used PubChem fingerprint and FP2 fingerprint. We then benchmarked FINDSITEcomb2.0M, FRAGSITEM, FRAGSITE2M, and the composite meta-approach FRAGSITEcombM. On the 102 target DUD-E set, the 1% enrichment factor (EF1%) and area under the precision-recall curve (AUPR) of FRAGSITEcomb increased from 42.0/0.59 to 47.6/0.72. This 0.72 AUPR is significantly better than that of the state-of-the-art deep learning-based method DenseFS's AUPR of 0.443. An independent test on the 81 targets DEKOIS2.0 set shows that EF1%/AUPR increases from 18.3/0.520 to 23.1/0.683. An ablation investigation shows that the MF contributes to most of the improvement of all four approaches. Thus, the MF is a useful addition to structure-based VLS.
Collapse
Affiliation(s)
- Hongyi Zhou
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeffrey Skolnick
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Zhou H, Skolnick J. FRAGSITE2: A structure and fragment-based approach for virtual ligand screening. Protein Sci 2024; 33:e4869. [PMID: 38100293 PMCID: PMC10751727 DOI: 10.1002/pro.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Protein function annotation and drug discovery often involve finding small molecule binders. In the early stages of drug discovery, virtual ligand screening (VLS) is frequently applied to identify possible hits before experimental testing. While our recent ligand homology modeling (LHM)-machine learning VLS method FRAGSITE outperformed approaches that combined traditional docking to generate protein-ligand poses and deep learning scoring functions to rank ligands, a more robust approach that could identify a more diverse set of binding ligands is needed. Here, we describe FRAGSITE2 that shows significant improvement on protein targets lacking known small molecule binders and no confident LHM identified template ligands when benchmarked on two commonly used VLS datasets: For both the DUD-E set and DEKOIS2.0 set and ligands having a Tanimoto coefficient (TC) < 0.7 to the template ligands, the 1% enrichment factor (EF1% ) of FRAGSITE2 is significantly better than those for FINDSITEcomb2.0 , an earlier LHM algorithm. For the DUD-E set, FRAGSITE2 also shows better ROC enrichment factor and AUPR (area under the precision-recall curve) than the deep learning DenseFS scoring function. Comparison with the RF-score-VS on the 76 target subset of DEKOIS2.0 and a TC < 0.99 to training DUD-E ligands, FRAGSITE2 has double the EF1% . Its boosted tree regression method provides for more robust performance than a deep learning multiple layer perceptron method. When compared with the pretrained language model for protein target features, FRAGSITE2 also shows much better performance. Thus, FRAGSITE2 is a promising approach that can discover novel hits for protein targets. FRAGSITE2's web service is freely available to academic users at http://sites.gatech.edu/cssb/FRAGSITE2.
Collapse
Affiliation(s)
- Hongyi Zhou
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Quintiens J, De Roover A, Cornelis FMF, Escribano-Núñez A, Sermon A, Pazmino S, Monteagudo S, Lories RJ. Hypoxia and Wnt signaling inversely regulate expression of chondroprotective molecule ANP32A in articular cartilage. Osteoarthritis Cartilage 2023; 31:507-518. [PMID: 36370958 DOI: 10.1016/j.joca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES ANP32A is a key protector of cartilage health, via preventing oxidative stress and Wnt hyper-activation. We aimed to unravel how ANP32A is regulated in cartilage. METHODS A bioinformatics pipeline was applied to identify regulators of ANP32A. Pathways of interest were targeted to study their impact on ANP32A in in vitro cultures of the human chondrocyte C28/I2 cell-line and primary human articular chondrocytes (hACs) from up to five different donors, using Wnt-activator CHIR99021, hypoxia-mimetic IOX2 and a hypoxia chamber. ANP32A was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In vivo, the effect of hypoxia was examined by immunohistochemistry in mice injected intra-articularly with IOX2 after destabilization of the medial meniscus. Effects of Wnt hyper-activation were investigated using Frzb-knockout mice and wild-type mice treated intra-articularly with CHIR99021. Wnt inhibition effects were assessed upon intra-articular injection of XAV939. RESULTS The hypoxia and Wnt signaling pathways were identified as networks controlling ANP32A expression. In vitro and in vivo experiments demonstrated increases in ANP32A upon hypoxic conditions (1.3-fold in hypoxia in C28/I2 cells with 95% confidence interval (CI) [1.11-1.54] and 1.90-fold in hACs [95% CI: 1.56-2] and 1.67-fold in ANP32A protein levels after DMM surgery with IOX2 injections [95% CI: 1.33-2.08]). Wnt hyper-activation decreased ANP32A in chondrocytes in vitro (1.23-fold decrease [95% CI: 1.02-1.49]) and in mice (1.45-fold decrease after CHIR99021 injection [95% CI: 1.22-1.72] and 1.41-fold decrease in Frzb-knockout mice [95% CI: 1.00-1.96]). Hypoxia and Wnt modulated ataxia-telangiectasia mutated serine/threonine kinase (ATM), an ANP32A target gene, in hACs (1.89-fold increase [95% CI: 1.38-2.60] and 1.41-fold decrease [95% CI: 1.02-1.96]). CONCLUSIONS Maintaining hypoxia and limiting Wnt activation sustain ANP32A and protect against osteoarthritis.
Collapse
Affiliation(s)
- J Quintiens
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| | - A De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - F M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - A Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - A Sermon
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Trauma Research and Innovation Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - S Pazmino
- Clinical Research Unit, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - S Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - R J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Viegas JO, Azad GK, Lv Y, Fishman L, Paltiel T, Pattabiraman S, Park JE, Kaganovich D, Sze SK, Rabani M, Esteban MA, Meshorer E. RNA degradation eliminates developmental transcripts during murine embryonic stem cell differentiation via CAPRIN1-XRN2. Dev Cell 2022; 57:2731-2744.e5. [PMID: 36495875 PMCID: PMC9796812 DOI: 10.1016/j.devcel.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Embryonic stem cells (ESCs) are self-renewing and pluripotent. In recent years, factors that control pluripotency, mostly nuclear, have been identified. To identify non-nuclear regulators of ESCs, we screened an endogenously labeled fluorescent fusion-protein library in mouse ESCs. One of the more compelling hits was the cell-cycle-associated protein 1 (CAPRIN1). CAPRIN1 knockout had little effect in ESCs, but it significantly altered differentiation and gene expression programs. Using RIP-seq and SLAM-seq, we found that CAPRIN1 associates with, and promotes the degradation of, thousands of RNA transcripts. CAPRIN1 interactome identified XRN2 as the likely ribonuclease. Upon early ESC differentiation, XRN2 is located in the nucleus and colocalizes with CAPRIN1 in small RNA granules in a CAPRIN1-dependent manner. We propose that CAPRIN1 regulates an RNA degradation pathway operating during early ESC differentiation, thus eliminating undesired spuriously transcribed transcripts in ESCs.
Collapse
Affiliation(s)
- Juliane O. Viegas
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Gajendra Kumar Azad
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel,Department of Zoology, Patna University, Patna, Bihar 800005, India
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lior Fishman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tal Paltiel
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | | | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Daniel Kaganovich
- School of Biological Sciences, University of Southampton, Southampton SO171BJ, UK,Wren Therapeutics, Cambridge CB21EW, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore,Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michal Rabani
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Miguel A. Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Eran Meshorer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel,Corresponding author
| |
Collapse
|
5
|
De Roover A, Núñez AE, Cornelis FM, Cherifi C, Casas-Fraile L, Sermon A, Cailotto F, Lories RJ, Monteagudo S. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. JCI Insight 2021; 6:150451. [PMID: 34727094 PMCID: PMC8783684 DOI: 10.1172/jci.insight.150451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis is the most prevalent joint disease worldwide, and it is a leading source of pain and disability. To date, this disease lacks curative treatment, as underlying molecular mechanisms remain largely unknown. The histone methyltransferase DOT1L protects against osteoarthritis, and DOT1L-mediated H3K79 methylation is reduced in human and mouse osteoarthritic joints. Thus, restoring DOT1L function seems to be critical to preserve joint health. However, DOT1L-regulating molecules and networks remain elusive, in the joint and beyond. Here, we identified transcription factors and networks that regulate DOT1L gene expression using a potentially novel bioinformatics pipeline. Thereby, we unraveled a possibly undiscovered link between the hypoxia pathway and DOT1L. We provide evidence that hypoxia enhanced DOT1L expression and H3K79 methylation via hypoxia-inducible factor-1 α (HIF1A). Importantly, we demonstrate that DOT1L contributed to the protective effects of hypoxia in articular cartilage and osteoarthritis. Intra-articular treatment with a selective hypoxia mimetic in mice after surgical induction of osteoarthritis restored DOT1L function and stalled disease progression. Collectively, our data unravel a molecular mechanism that protects against osteoarthritis with hypoxia inducing DOT1L transcription in cartilage. Local treatment with a selective hypoxia mimetic in the joint restores DOT1L function and could be an attractive therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ana Escribano Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederique Mf Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Chahrazad Cherifi
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Sermon
- Division of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Locomotor and Neurological Disorders Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederic Cailotto
- UMR 7365 CNRS - University of Lorraine, Molecular Engineering and Articular Physiopathology, Biopôle, University of Lorraine, Campus Biologie-Santé, Vandoeuvre-Les-Nancy, France
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Blanco E, González-Ramírez M, Di Croce L. Productive visualization of high-throughput sequencing data using the SeqCode open portable platform. Sci Rep 2021; 11:19545. [PMID: 34599234 PMCID: PMC8486768 DOI: 10.1038/s41598-021-98889-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Large-scale sequencing techniques to chart genomes are entirely consolidated. Stable computational methods to perform primary tasks such as quality control, read mapping, peak calling, and counting are likewise available. However, there is a lack of uniform standards for graphical data mining, which is also of central importance. To fill this gap, we developed SeqCode, an open suite of applications that analyzes sequencing data in an elegant but efficient manner. Our software is a portable resource written in ANSI C that can be expected to work for almost all genomes in any computational configuration. Furthermore, we offer a user-friendly front-end web server that integrates SeqCode functions with other graphical analysis tools. Our analysis and visualization toolkit represents a significant improvement in terms of performance and usability as compare to other existing programs. Thus, SeqCode has the potential to become a key multipurpose instrument for high-throughput professional analysis; further, it provides an extremely useful open educational platform for the world-wide scientific community. SeqCode website is hosted at http://ldicrocelab.crg.eu, and the source code is freely distributed at https://github.com/eblancoga/seqcode.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Delineating the heterogeneity of matrix-directed differentiation toward soft and stiff tissue lineages via single-cell profiling. Proc Natl Acad Sci U S A 2021; 118:2016322118. [PMID: 33941688 PMCID: PMC8126831 DOI: 10.1073/pnas.2016322118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clinical utility of mesenchymal stromal/stem cells (MSCs) in mediating immunosuppressive effects and supporting regenerative processes is broadly established. However, the inherent heterogeneity of MSCs compromises its biomedical efficacy and reproducibility. To study how cellular variation affects fate decision-making processes, we perform single-cell RNA sequencing at multiple time points during bipotential matrix-directed differentiation toward soft- and stiff tissue lineages. In this manner, we identify distinctive MSC subpopulations that are characterized by their multipotent differentiation capacity and mechanosensitivity. Also, whole-genome screening highlights TPM1 as a potent mechanotransducer of matrix signals and regulator of cell differentiation. Thus, by introducing single-cell methodologies into mechanobiology, we delineate the complexity of adult stem cell responses to extracellular cues in tissue regeneration and immunomodulation. Mesenchymal stromal/stem cells (MSCs) form a heterogeneous population of multipotent progenitors that contribute to tissue regeneration and homeostasis. MSCs assess extracellular elasticity by probing resistance to applied forces via adhesion, cytoskeletal, and nuclear mechanotransducers that direct differentiation toward soft or stiff tissue lineages. Even under controlled culture conditions, MSC differentiation exhibits substantial cell-to-cell variation that remains poorly characterized. By single-cell transcriptional profiling of nonconditioned, matrix-conditioned, and early differentiating cells, we identified distinct MSC subpopulations with distinct mechanosensitivities, differentiation capacities, and cell cycling. We show that soft matrices support adipogenesis of multipotent cells and early endochondral ossification of nonadipogenic cells, whereas intramembranous ossification and preosteoblast proliferation are directed by stiff matrices. Using diffusion pseudotime mapping, we outline hierarchical matrix-directed differentiation and perform whole-genome screening of mechanoresponsive genes. Specifically, top-ranked tropomyosin-1 is highly sensitive to stiffness cues both at RNA and protein levels, and changes in TPM1 expression determine the differentiation toward soft versus stiff tissue lineage. Consistent with actin stress fiber stabilization, tropomyosin-1 overexpression maintains YAP1 nuclear localization, activates YAP1 target genes, and directs osteogenic differentiation. Knockdown of tropomyosin-1 reversed YAP1 nuclear localization consistent with relaxation of cellular contractility, suppressed osteogenesis, activated early endochondral ossification genes after 3 d of culture in induction medium, and facilitated adipogenic differentiation after 1 wk. Our results delineate cell-to-cell variation of matrix-directed MSC differentiation and highlight tropomyosin-mediated matrix sensing.
Collapse
|
8
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
9
|
Poullet M, Orlando L. Assessing DNA Sequence Alignment Methods for Characterizing Ancient Genomes and Methylomes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
10
|
Sorek M, Cohen LRZ, Meshorer E. Open chromatin structure in PolyQ disease-related genes: a potential mechanism for CAG repeat expansion in the normal human population. NAR Genom Bioinform 2019; 1:e3. [PMID: 33575550 PMCID: PMC7671342 DOI: 10.1093/nargab/lqz003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
The human genome contains dozens of genes that encode for proteins containing long poly-glutamine repeats (polyQ, usually encoded by CAG codons) of 10Qs or more. However, only nine of these genes have been reported to expand beyond the healthy variation and cause diseases. To address whether these nine disease-associated genes are unique in any way, we compared genetic and epigenetic features relative to other types of genes, especially repeat containing genes that do not cause diseases. Our analyses show that in pluripotent cells, the nine polyQ disease-related genes are characterized by an open chromatin profile, enriched for active chromatin marks and depleted for suppressive chromatin marks. By contrast, genes that encode for polyQ-containing proteins that are not associated with diseases, and other repeat containing genes, possess a suppressive chromatin environment. We propose that the active epigenetic landscape support decreased genomic stability and higher susceptibility for expansion mutations.
Collapse
Affiliation(s)
- Matan Sorek
- Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel.,Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel
| | - Lea R Z Cohen
- Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel.,Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel
| | - Eran Meshorer
- Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel.,Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel
| |
Collapse
|
11
|
Filipponi D, Emelyanov A, Muller J, Molina C, Nichols J, Bulavin DV. DNA Damage Signaling-Induced Cancer Cell Reprogramming as a Driver of Tumor Relapse. Mol Cell 2019; 74:651-663.e8. [DOI: 10.1016/j.molcel.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
|
12
|
Zeng J, Li G. TFmapper: A Tool for Searching Putative Factors Regulating Gene Expression Using ChIP-seq Data. Int J Biol Sci 2018; 14:1724-1731. [PMID: 30416387 PMCID: PMC6216026 DOI: 10.7150/ijbs.28850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Next-generation sequencing coupled to chromatin immunoprecipitation (ChIP-seq), DNase I hypersensitivity (DNase-seq) and the transposase-accessible chromatin assay (ATAC-seq) has generated enormous amounts of data, markedly improved our understanding of the transcriptional and epigenetic control of gene expression. To take advantage of the availability of such datasets and provide clues on what factors, including transcription factors, epigenetic regulators and histone modifications, potentially regulates the expression of a gene of interest, a tool for simultaneous queries of multiple datasets using symbols or genomic coordinates as search terms is needed. Results: In this study, we annotated the peaks of thousands of ChIP-seq datasets generated by ENCODE project, or ChIP-seq/DNase-seq/ATAC-seq datasets deposited in Gene Expression Omnibus (GEO) and curated by Cistrome project; We built a MySQL database called TFmapper containing the annotations and associated metadata, allowing users without bioinformatics expertise to search across thousands of datasets to identify factors targeting a genomic region/gene of interest in a specified sample through a web interface. Users can also visualize multiple peaks in genome browsers and download the corresponding sequences. Conclusion: TFmapper will help users explore the vast amount of publicly available ChIP-seq/DNase-seq/ATAC-seq data and perform integrative analyses to understand the regulation of a gene of interest. The web server is freely accessible at http://www.tfmapper.org/.
Collapse
Affiliation(s)
- Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
13
|
Koifman G, Shetzer Y, Eizenberger S, Solomon H, Rotkopf R, Molchadsky A, Lonetto G, Goldfinger N, Rotter V. A Mutant p53-Dependent Embryonic Stem Cell Gene Signature Is Associated with Augmented Tumorigenesis of Stem Cells. Cancer Res 2018; 78:5833-5847. [PMID: 30154152 DOI: 10.1158/0008-5472.can-18-0805] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/10/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Mutations in the tumor suppressor p53 are the most frequent alterations in human cancer. These mutations include p53-inactivating mutations as well as oncogenic gain-of-function (GOF) mutations that endow p53 with capabilities to promote tumor progression. A primary challenge in cancer therapy is targeting stemness features and cancer stem cells (CSC) that account for tumor initiation, metastasis, and cancer relapse. Here we show that in vitro cultivation of tumors derived from mutant p53 murine bone marrow mesenchymal stem cells (MSC) gives rise to aggressive tumor lines (TL). These MSC-TLs exhibited CSC features as displayed by their augmented oncogenicity and high expression of CSC markers. Comparative analyses between MSC-TL with their parental mutant p53 MSC allowed for identification of the molecular events underlying their tumorigenic properties, including an embryonic stem cell (ESC) gene signature specifically expressed in MSC-TLs. Knockout of mutant p53 led to a reduction in tumor development and tumorigenic cell frequency, which was accompanied by reduced expression of CSC markers and the ESC MSC-TL signature. In human cancer, MSC-TL ESC signature-derived genes correlated with poor patient survival and were highly expressed in human tumors harboring p53 hotspot mutations. These data indicate that the ESC gene signature-derived genes may serve as new stemness-based prognostic biomarkers as well as novel cancer therapeutic targets.Significance: Mesenchymal cancer stem cell-like cell lines express a mutant p53-dependent embryonic stem cell gene signature, which can serve as a potential prognostic biomarker and therapeutic target in cancer. Cancer Res; 78(20); 5833-47. ©2018 AACR.
Collapse
Affiliation(s)
- Gabriela Koifman
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Shetzer
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Shay Eizenberger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Solomon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatic unit, Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppe Lonetto
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Schlesinger S, Kaffe B, Melcer S, Aguilera JD, Sivaraman DM, Kaplan T, Meshorer E. A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res 2017; 45:12181-12194. [PMID: 29036702 PMCID: PMC5716099 DOI: 10.1093/nar/gkx817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022] Open
Abstract
Histone variants and their chaperones are key regulators of eukaryotic transcription, and are critical for normal development. The histone variant H3.3 has been shown to play important roles in pluripotency and differentiation, and although its genome-wide patterns have been investigated, little is known about the role of its dynamic turnover in transcriptional regulation. To elucidate the role of H3.3 dynamics in embryonic stem cell (ESC) biology, we generated mouse ESC lines carrying a single copy of a doxycycline (Dox)-inducible HA-tagged version of H3.3 and monitored the rate of H3.3 incorporation by ChIP-seq at varying time points following Dox induction, before and after RA-induced differentiation. Comparing H3.3 turnover profiles in ESCs and RA-treated cells, we identified a hyperdynamic H3.3-containing nucleosome at the −1 position in promoters of genes expressed in ESCs. This dynamic nucleosome is restricted and shifted downstream into the +1 position following differentiation. We suggest that histone turnover dynamics provides an additional mechanism involved in expression regulation, and that a hyperdynamic −1 nucleosome marks promoters in ESCs. Our data provide evidence for regional regulation of H3.3 turnover in ESC promoters, and calls for testing, in high resolution, the dynamic behavior of additional histone variants and other structural chromatin proteins.
Collapse
Affiliation(s)
- Sharon Schlesinger
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.,Department of animal science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Binyamin Kaffe
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Shai Melcer
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Jose D Aguilera
- Department of animal science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Divya M Sivaraman
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Eran Meshorer
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
15
|
Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation. Stem Cell Reports 2017; 9:1291-1303. [PMID: 28966118 PMCID: PMC5639460 DOI: 10.1016/j.stemcr.2017.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 01/21/2023] Open
Abstract
Embryonic stem cells (ESCs) are regulated by pluripotency-related transcription factors in concert with chromatin regulators. To identify additional stem cell regulators, we screened a library of endogenously labeled fluorescent fusion proteins in mouse ESCs for fluorescence loss during differentiation. We identified SET, which displayed a rapid isoform shift during early differentiation from the predominant isoform in ESCs, SETα, to the primary isoform in differentiated cells, SETβ, through alternative promoters. SETα is selectively bound and regulated by pluripotency factors. SET depletion causes proliferation slowdown and perturbed neuronal differentiation in vitro and developmental arrest in vivo, and photobleaching methods demonstrate SET's role in maintaining a dynamic chromatin state in ESCs. This work identifies an important regulator of pluripotency and early differentiation, which is controlled by alternative promoter usage. We identify SETα to be rapidly downregulated during ESC differentiation SETα is regulated by pluripotency factors and replaced by SETβ during differentiation SETα/SETβ switch is crucial for ESC differentiation SETα regulates chromatin plasticity in ESCs
Collapse
|
16
|
Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, van Ijcken WF, Grosveld F, Frommolt P, Bazzi H, Rada-Iglesias A. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell 2017; 20:689-705.e9. [DOI: 10.1016/j.stem.2017.02.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
|
17
|
Vainshtein Y, Rippe K, Teif VB. NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data. BMC Genomics 2017; 18:158. [PMID: 28196481 PMCID: PMC5309995 DOI: 10.1186/s12864-017-3580-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Background Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yevhen Vainshtein
- Functional Genomics Group, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569, Stuttgart, Germany.
| | - Karsten Rippe
- Research Group Genome Organization & Function, German Cancer Research Center (DKFZ) and Bioquant, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vladimir B Teif
- School of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK.
| |
Collapse
|
18
|
Aaronson Y, Livyatan I, Gokhman D, Meshorer E. Systematic identification of gene family regulators in mouse and human embryonic stem cells. Nucleic Acids Res 2016; 44:4080-9. [PMID: 27084933 PMCID: PMC4872113 DOI: 10.1093/nar/gkw259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/22/2023] Open
Abstract
Pluripotent self-renewing embryonic stem cells (ESCs) have been the focus of a growing number of high-throughput experiments, revealing the genome-wide locations of hundreds of transcription factors and histone modifications. While most of these datasets were used in a specific context, all datasets combined offer a comprehensive view of chromatin characteristics and regulatory elements that govern cell states. Here, using hundreds of datasets in ESCs, we generated colocalization maps of chromatin proteins and modifications, and built a discovery pipeline for regulatory proteins of gene families. By comparing genome-wide binding data with over-expression and knockdown analysis of hundreds of genes, we discovered that the pluripotency-related factor NR5A2 separates mitochondrial from cytosolic ribosomal genes, regulating their expression. We further show that genes with a common chromatin profile are enriched for distinct Gene Ontology (GO) categories. Our approach can be generalized to reveal common regulators of any gene group; discover novel gene families, and identify common genomic elements based on shared chromatin features.
Collapse
Affiliation(s)
- Yair Aaronson
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | - Ilana Livyatan
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | - David Gokhman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel The Edmond and Lily Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|