1
|
Moorman AR, Benitez EK, Cambuli F, Jiang Q, Mahmoud A, Lumish M, Hartner S, Balkaran S, Bermeo J, Asawa S, Firat C, Saxena A, Wu F, Luthra A, Burdziak C, Xie Y, Sgambati V, Luckett K, Li Y, Yi Z, Masilionis I, Soares K, Pappou E, Yaeger R, Kingham P, Jarnagin W, Paty P, Weiser MR, Mazutis L, D'Angelica M, Shia J, Garcia-Aguilar J, Nawy T, Hollmann TJ, Chaligné R, Sanchez-Vega F, Sharma R, Pe'er D, Ganesh K. Progressive plasticity during colorectal cancer metastasis. Nature 2024:10.1038/s41586-024-08150-0. [PMID: 39478232 DOI: 10.1038/s41586-024-08150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
As cancers progress, they become increasingly aggressive-metastatic tumours are less responsive to first-line therapies than primary tumours, they acquire resistance to successive therapies and eventually cause death1,2. Mutations are largely conserved between primary and metastatic tumours from the same patients, suggesting that non-genetic phenotypic plasticity has a major role in cancer progression and therapy resistance3-5. However, we lack an understanding of metastatic cell states and the mechanisms by which they transition. Here, in a cohort of biospecimen trios from same-patient normal colon, primary and metastatic colorectal cancer, we show that, although primary tumours largely adopt LGR5+ intestinal stem-like states, metastases display progressive plasticity. Cancer cells lose intestinal cell identities and reprogram into a highly conserved fetal progenitor state before undergoing non-canonical differentiation into divergent squamous and neuroendocrine-like states, a process that is exacerbated in metastasis and by chemotherapy and is associated with poor patient survival. Using matched patient-derived organoids, we demonstrate that metastatic cells exhibit greater cell-autonomous multilineage differentiation potential in response to microenvironment cues compared with their intestinal lineage-restricted primary tumour counterparts. We identify PROX1 as a repressor of non-intestinal lineage in the fetal progenitor state, and show that downregulation of PROX1 licenses non-canonical reprogramming.
Collapse
Affiliation(s)
- A R Moorman
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E K Benitez
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - F Cambuli
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Q Jiang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Mahmoud
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA
| | - M Lumish
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - S Hartner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Balkaran
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Bermeo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Asawa
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Firat
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Saxena
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Luthra
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Burdziak
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Xie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - V Sgambati
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - K Luckett
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Y Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Z Yi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - I Masilionis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - K Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Pappou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - R Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - P Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - P Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M R Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - L Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Garcia-Aguilar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Nawy
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T J Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, Princeton, NJ, USA
| | - R Chaligné
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Sanchez-Vega
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - K Ganesh
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Sadien ID, Adler S, Mehmed S, Bailey S, Sawle A, Couturier DL, Eldridge M, Adams DJ, Kemp R, Lourenço FC, Winton DJ. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Nature 2024; 634:1196-1203. [PMID: 39478206 PMCID: PMC11525183 DOI: 10.1038/s41586-024-08053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis1,2. APC-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants3-5. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process6,7. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Collapse
Affiliation(s)
- Iannish D Sadien
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sam Adler
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shenay Mehmed
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sasha Bailey
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
3
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Wang J, Hou Q, Qu J, Huo X, Li H, Feng Y, Wang Q, Chang L, Xu C. Polyhedral magnetic nanoparticles induce apoptosis in gastric cancer stem cells and suppressing tumor growth through magnetic force generation. J Control Release 2024; 373:370-384. [PMID: 39032573 DOI: 10.1016/j.jconrel.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Gastric cancer is a prevalent malignant tumor worldwide, posing challenges due to its poor prognosis and limited treatment options. Cancer stem cells (CSCs) were demonstrated as a subset of cancer cells responsible for tumor initiation and progression, and their inherent resistance to conventional chemotherapy and radiotherapy critically contributes to tumor recurrence and metastasis. Promoting the eradication of cancer stem cells is crucial for enhancing the efficacy of cancer treatments. This study introduces a novel therapeutic strategy utilizing polyhedral magnetic nanoparticles (PMNPs) functionalized with CD44 antibodies and cell-penetrating peptides (CPPs) to improve uptake by gastric cancer stem cells (MCSCs). PMNPs, synthesized via thermal decomposition, exhibited a diameter of 90 nm ± 9 nm and a saturation magnetization of 79.9 emu/g. Functionalization enhanced their uptake capabilities. Under a rotating magnetic field (RMF) of 15 Hz, PMNPs disrupted cellular structure, leading to apoptosis and ferroptosis in MCSCs. The in vitro studies showed significant reduction in MCSCs viability, while in vivo studies demonstrated tumor growth suppression with minimal side effects and high biocompatibility. This work presents a novel strategy for designing magnetic nanoparticles to mechanically destroy cancer stem cells, offering a more efficient and safety treatment option for gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Second Department of General Surgery, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Qiang Hou
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Jie Qu
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Huiting Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Yangmeng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Qiyu Wang
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China.
| |
Collapse
|
5
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Kinoshita H, Martinez-Ordoñez A, Cid-Diaz T, Han Q, Duran A, Muta Y, Zhang X, Linares JF, Nakanishi Y, Kasashima H, Yashiro M, Maeda K, Albaladejo-Gonzalez A, Torres-Moreno D, García-Solano J, Conesa-Zamora P, Inghirami G, Diaz-Meco MT, Moscat J. Epithelial aPKC deficiency leads to stem cell loss preceding metaplasia in colorectal cancer initiation. Dev Cell 2024; 59:1972-1987.e8. [PMID: 38815584 PMCID: PMC11303105 DOI: 10.1016/j.devcel.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
The early mechanisms of spontaneous tumor initiation that precede malignancy are largely unknown. We show that reduced aPKC levels correlate with stem cell loss and the induction of revival and metaplastic programs in serrated- and conventional-initiated premalignant lesions, which is perpetuated in colorectal cancers (CRCs). Acute inactivation of PKCλ/ι in vivo and in mouse organoids is sufficient to stimulate JNK in non-transformed intestinal epithelial cells (IECs), which promotes cell death and the rapid loss of the intestinal stem cells (ISCs), including those that are LGR5+. This is followed by the accumulation of revival stem cells (RSCs) at the bottom of the crypt and fetal-metaplastic cells (FMCs) at the top, creating two spatiotemporally distinct cell populations that depend on JNK-induced AP-1 and YAP. These cell lineage changes are maintained during cancer initiation and progression and determine the aggressive phenotype of human CRC, irrespective of their serrated or conventional origin.
Collapse
Affiliation(s)
- Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yu Muta
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city 545-8585, Japan
| | - Ana Albaladejo-Gonzalez
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202 Cartagena, Spain
| | - Daniel Torres-Moreno
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202 Cartagena, Spain
| | - José García-Solano
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202 Cartagena, Spain
| | - Pablo Conesa-Zamora
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202 Cartagena, Spain
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
7
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
8
|
Verhagen MP, Joosten R, Schmitt M, Välimäki N, Sacchetti A, Rajamäki K, Choi J, Procopio P, Silva S, van der Steen B, van den Bosch TPP, Seinstra D, de Vries AC, Doukas M, Augenlicht LH, Aaltonen LA, Fodde R. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat Genet 2024; 56:1456-1467. [PMID: 38902475 PMCID: PMC11250264 DOI: 10.1038/s41588-024-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.
Collapse
Affiliation(s)
- Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Schmitt
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Paola Procopio
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Sara Silva
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Danielle Seinstra
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Martínez-Pérez J, Torrado C, Domínguez-Cejudo MA, Valladares-Ayerbes M. Targeted Treatment against Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:6220. [PMID: 38892410 PMCID: PMC11172446 DOI: 10.3390/ijms25116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The cancer stem cell (SC) theory proposes that a population of SCs serves as the driving force behind fundamental tumor processes, including metastasis, recurrence, and resistance to therapy. The standard of care for patients with stage III and high-risk stage II colorectal cancer (CRC) includes surgery and adjuvant chemotherapy. Fluoropyrimidines and their combination with oxaliplatin increased the cure rates, being able to eradicate the occult metastatic SC in a fraction of patients. The treatment for unresectable metastatic CRC is based on chemotherapy, antibodies to VEGF and EGFR, and tyrosine-kinase inhibitors. Immunotherapy is used in MSI-H tumors. Currently used drugs target dividing cells and, while often effective at debulking tumor mass, these agents have largely failed to cure metastatic disease. SCs are generated either due to genetic and epigenetic alterations in stem/progenitor cells or to the dedifferentiation of somatic cells where diverse signaling pathways such as Wnt/β-catenin, Hedgehog, Notch, TGF-β/SMAD, PI3K/Akt/mTOR, NF-κB, JAK/STAT, DNA damage response, and Hippo-YAP play a key role. Anti-neoplastic treatments could be improved by elimination of SCs, becoming an attractive target for the design of novel agents. Here, we present a review of clinical trials assessing the efficacy of targeted treatment focusing on these pathways in CRC.
Collapse
Affiliation(s)
- Julia Martínez-Pérez
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - María A. Domínguez-Cejudo
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| | - Manuel Valladares-Ayerbes
- Medical Oncology Department, Hospital Universitario Virgen del Rocio (HUVR), Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avenida de Manuel Siurot s/n, 41013 Seville, Spain;
| |
Collapse
|
11
|
Li W, Huang C, Qiu L, Tang Y, Zhang X, Zhang L, Zhao H, Miyagishi M, Kasim V, Wu S. p52-ZER6/IGF1R axis maintains cancer stem cell population to promote cancer progression by enhancing pro-survival mitophagy. Oncogene 2024; 43:2115-2131. [PMID: 38773262 DOI: 10.1038/s41388-024-03058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.
Collapse
Affiliation(s)
- Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Can Huang
- Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Li Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xia Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
12
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
14
|
Higa T, Nakayama KI. Cell cycle heterogeneity and plasticity of colorectal cancer stem cells. Cancer Sci 2024; 115:1370-1377. [PMID: 38413370 PMCID: PMC11093209 DOI: 10.1111/cas.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer stem cells (CSCs) are a long-lived and self-renewing cancer cell population that drives tumor propagation and maintains cancer heterogeneity. They are also implicated in the therapeutic resistance of various types of cancer. Recent studies of CSCs in colorectal cancer (CRC) have uncovered fundamental paradigms that have increased understanding of CSC systems in solid tumors. Colorectal CSCs share multiple biological properties with normal intestinal stem cells (ISCs), including expression of the stem cell marker Lgr5. New evidence suggests that colorectal CSCs manifest substantial heterogeneity, as exemplified by the existence of both actively cycling Lgr5+ CSCs as well as quiescent Lgr5+ CSCs that are resistant to conventional anticancer therapies. The classical view of a rigid cell hierarchy and irreversible cell differentiation trajectory in normal and neoplastic tissues is now challenged by the finding that differentiated cells have the capacity to revert to stem cells through dynamic physiological reprogramming events. Such plasticity of CSC systems likely underlies both carcinogenesis and therapeutic resistance in CRC. Further characterization of the mechanisms underpinning the heterogeneity and plasticity of CSCs should inform future development of eradicative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Tsunaki Higa
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
- Anticancer Strategies Laboratory, TMDU Advanced Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
15
|
Hosohama L, Tifrea DF, Nee K, Park SY, Wu J, Habowski AN, Van C, Seldin MM, Edwards RA, Waterman ML. Colorectal Cancer Stem Cell Subtypes Orchestrate Distinct Tumor Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591144. [PMID: 38712298 PMCID: PMC11071458 DOI: 10.1101/2024.04.25.591144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Several classification systems have been developed to define tumor subtypes in colorectal cancer (CRC). One system proposes that tumor heterogeneity derives in part from distinct cancer stem cell populations that co-exist as admixtures of varying proportions. However, the lack of single cell resolution has prohibited a definitive identification of these types of stem cells and therefore any understanding of how each influence tumor phenotypes. Here were report the isolation and characterization of two cancer stem cell subtypes from the SW480 CRC cell line. We find these cancer stem cells are oncogenic versions of the normal Crypt Base Columnar (CBC) and Regenerative Stem Cell (RSC) populations from intestinal crypts and that their gene signatures are consistent with the "Admixture" and other CRC classification systems. Using publicly available single cell RNA sequencing (scRNAseq) data from CRC patients, we determine that RSC and CBC cancer stem cells are commonly co-present in human CRC. To characterize influences on the tumor microenvironment, we develop subtype-specific xenograft models and we define their tumor microenvironments at high resolution via scRNAseq. RSCs create differentiated, inflammatory, slow growing tumors. CBCs create proliferative, undifferentiated, invasive tumors. With this enhanced resolution, we unify current CRC patient classification schema with TME phenotypes and organization.
Collapse
Affiliation(s)
- Linzi Hosohama
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Delia F. Tifrea
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Kevin Nee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Sung Yun Park
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Jie Wu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Amber N. Habowski
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Cassandra Van
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| | - Robert A. Edwards
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| | - Marian L. Waterman
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| |
Collapse
|
16
|
Malviya G, Lannagan TR, Johnson E, Mackintosh A, Bielik R, Peters A, Soloviev D, Brown G, Jackstadt R, Nixon C, Gilroy K, Campbell A, Sansom OJ, Lewis DY. Noninvasive Stratification of Colon Cancer by Multiplex PET Imaging. Clin Cancer Res 2024; 30:1518-1529. [PMID: 38493804 PMCID: PMC11016897 DOI: 10.1158/1078-0432.ccr-23-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/30/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The current approach for molecular subtyping of colon cancer relies on gene expression profiling, which is invasive and has limited ability to reveal dynamics and spatial heterogeneity. Molecular imaging techniques, such as PET, present a noninvasive alternative for visualizing biological information from tumors. However, the factors influencing PET imaging phenotype, the suitable PET radiotracers for differentiating tumor subtypes, and the relationship between PET phenotypes and tumor genotype or gene expression-based subtyping remain unknown. EXPERIMENTAL DESIGN In this study, we conducted 126 PET scans using four different metabolic PET tracers, [18F]fluorodeoxy-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET), 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), and [11C]acetate ([11C]ACE), using a spectrum of five preclinical colon cancer models with varying genetics (BMT, AKPN, AK, AKPT, KPN), at three sites (subcutaneous, orthograft, autochthonous) and at two tumor stages (primary vs. metastatic). RESULTS The results demonstrate that imaging signatures are influenced by genotype, tumor environment, and stage. PET imaging signatures exhibited significant heterogeneity, with each cancer model displaying distinct radiotracer profiles. Oncogenic Kras and Apc loss showed the most distinctive imaging features, with [18F]FLT and [18F]FET being particularly effective, respectively. The tissue environment notably impacted [18F]FDG uptake, and in a metastatic model, [18F]FET demonstrated higher uptake. CONCLUSIONS By examining factors contributing to PET-imaging phenotype, this study establishes the feasibility of noninvasive molecular stratification using multiplex radiotracer PET. It lays the foundation for further exploration of PET-based subtyping in human cancer, thereby facilitating noninvasive molecular diagnosis.
Collapse
Affiliation(s)
- Gaurav Malviya
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow; Glasgow, United Kingdom
| | | | - Emma Johnson
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Agata Mackintosh
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Robert Bielik
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Adam Peters
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Dmitry Soloviev
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Gavin Brown
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Consortium (DKTK), Germany
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Andrew Campbell
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow; Glasgow, United Kingdom
| | - David Y. Lewis
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow; Glasgow, United Kingdom
| |
Collapse
|
17
|
Zhong Z, Virshup DM. Recurrent mutations in tumor suppressor FBXW7 bypass Wnt/β-catenin addiction in cancer. SCIENCE ADVANCES 2024; 10:eadk1031. [PMID: 38569029 PMCID: PMC10990278 DOI: 10.1126/sciadv.adk1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Pathologic Wnt/β-catenin signaling drives various cancers, leading to multiple approaches to drug this pathway. Appropriate patient selection can maximize success of these interventions. Wnt ligand addiction is a druggable vulnerability in RNF43-mutant/RSPO-fusion cancers. However, pharmacologically targeting the biogenesis of Wnt ligands, e.g., with PORCN inhibitors, has shown mixed therapeutic responses, possibly due to tumor heterogeneity. Here, we show that the tumor suppressor FBXW7 is frequently mutated in RNF43-mutant/RSPO-fusion tumors, and FBXW7 mutations cause intrinsic resistance to anti-Wnt therapies. Mechanistically, FBXW7 inactivation stabilizes multiple oncoproteins including Cyclin E and MYC and antagonizes the cytostatic effect of Wnt inhibitors. Moreover, although FBXW7 mutations do not mitigate β-catenin degradation upon Wnt inhibition, FBXW7-mutant RNF43-mutant/RSPO-fusion cancers instead lose dependence on β-catenin signaling, accompanied by dedifferentiation and loss of lineage specificity. These FBXW7-mutant Wnt/β-catenin-independent tumors are susceptible to multi-cyclin-dependent kinase inhibition. An in-depth understanding of primary resistance to anti-Wnt/β-catenin therapies allows for more appropriate patient selection and use of alternative mechanism-based therapies.
Collapse
Affiliation(s)
- Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
18
|
Lin K, Chowdhury S, Zeineddine MA, Zeineddine FA, Hornstein NJ, Villarreal OE, Maru DM, Haymaker CL, Vauthey JN, Chang GJ, Bogatenkova E, Menter D, Kopetz S, Shen JP. Identification of Colorectal Cancer Cell Stemness from Single-Cell RNA Sequencing. Mol Cancer Res 2024; 22:337-346. [PMID: 38156967 PMCID: PMC10987274 DOI: 10.1158/1541-7786.mcr-23-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Cancer stem cells (CSC) play a critical role in metastasis, relapse, and therapy resistance in colorectal cancer. While characterization of the normal lineage of cell development in the intestine has led to the identification of many genes involved in the induction and maintenance of pluripotency, recent studies suggest significant heterogeneity in CSC populations. Moreover, while many canonical colorectal cancer CSC marker genes have been identified, the ability to use these classical markers to annotate stemness at the single-cell level is limited. In this study, we performed single-cell RNA sequencing on a cohort of 6 primary colon, 9 liver metastatic tumors, and 11 normal (nontumor) controls to identify colorectal CSCs at the single-cell level. Finding poor alignment of the 11 genes most used to identify colorectal CSC, we instead extracted a single-cell stemness signature (SCS_sig) that robustly identified "gold-standard" colorectal CSCs that expressed all marker genes. Using this SCS_sig to quantify stemness, we found that while normal epithelial cells show a bimodal distribution, indicating distinct stem and differentiated states, in tumor epithelial cells stemness is a continuum, suggesting greater plasticity in these cells. The SCS_sig score was quite variable between different tumors, reflective of the known transcriptomic heterogeneity of CRC. Notably, patients with higher SCS_sig scores had significantly shorter disease-free survival time after curative intent surgical resection, suggesting stemness is associated with relapse. IMPLICATIONS This study reveals significant heterogeneity of expression of genes commonly used to identify colorectal CSCs, and identifies a novel stemness signature to identify these cells from scRNA-seq data.
Collapse
Affiliation(s)
- Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohammad A. Zeineddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fadl A. Zeineddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nicholas J. Hornstein
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Oscar E. Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cara L. Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George J. Chang
- Department of Colon and Rectal Surgery, The University of Texas-MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Tape CJ. Plastic persisters: revival stem cells in colorectal cancer. Trends Cancer 2024; 10:185-195. [PMID: 38071119 DOI: 10.1016/j.trecan.2023.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 03/16/2024]
Abstract
Colorectal cancer (CRC) is traditionally considered to be a genetically driven disease. However, nongenetic plasticity has recently emerged as a major driver of tumour initiation, metastasis, and therapy response in CRC. Central to these processes is a recently discovered cell type, the revival colonic stem cell (revCSC). In contrast to traditional proliferative CSCs (proCSCs), revCSCs prioritise survival over propagation. revCSCs play an essential role in primary tumour formation, metastatic dissemination, and nongenetic chemoresistance. Current evidence suggests that CRC tumours leverage intestinal stem cell plasticity to both proliferate (via proCSCs) when unchallenged and survive (via revCSCs) in response to cell-extrinsic pressures. Although revCSCs likely represent a major source of therapeutic failure in CRC, our increasing knowledge of this important stem cell fate provides novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
20
|
Hlavca S, Chan WH, Engel RM, Abud HE. Clusterin: a marker and mediator of chemoresistance in colorectal cancer. Cancer Metastasis Rev 2024; 43:379-391. [PMID: 38319453 PMCID: PMC11015998 DOI: 10.1007/s10555-024-10173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treatment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the LGR5+ve CSC population is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert to a stem-like state in response to chemotherapy treatment which replenishes the LGR5+ve CSC population and maintains tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective target for therapeutic intervention.
Collapse
Affiliation(s)
- Sara Hlavca
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia.
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia.
| |
Collapse
|
21
|
Dunne PD, Arends MJ. Molecular pathological classification of colorectal cancer-an update. Virchows Arch 2024; 484:273-285. [PMID: 38319359 PMCID: PMC10948573 DOI: 10.1007/s00428-024-03746-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Colorectal cancer (CRC) has a broad range of molecular alterations with two major mechanisms of genomic instability (chromosomal instability and microsatellite instability) and has been subclassified into 4 consensus molecular subtypes (CMS) based on bulk RNA sequence data. Here, we update the molecular pathological classification of CRC with an overview of more recent bulk and single-cell RNA data analysis for development of transcriptional classifiers and risk stratification methods, taking into account the marked inter-tumoural and intra-tumoural heterogeneity of CRC. The importance of the stromal and immune components or tumour microenvironment (TME) to prognosis has emerged from these analyses. Attempts to remove the contribution of the tumour microenvironment and reveal neoplastic-specific transcriptional traits involved identification of the CRC intrinsic subtypes (CRIS). The use of immunohistochemistry and digital pathology to implement classification systems are evolving fields. Conventional adenoma versus serrated polyp pathway transcriptomic analysis and characterisation of canonical LGR5+ crypt base columnar stem cell versus ANXA1+ regenerative stem cell phenotypes emerged as key properties for improved understanding of transcriptional signals involved in molecular subclassification of colorectal cancers. Recently, classification by three pathway-derived subtypes (PDS1-3) has been developed, revealing a continuum of intrinsic biology associated with biological, stem cell, histopathological, and clinical attributes.
Collapse
Affiliation(s)
- Philip D Dunne
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, Belfast, Northern Ireland, BT8 7AE, UK
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, G61 1QH, UK
| | - Mark J Arends
- Edinburgh Pathology & Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
22
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
23
|
Mzoughi S, Schwarz M, Wang X, Demircioglu D, Ulukaya G, Mohammed K, Tullio FD, Company C, Dramaretska Y, Leushacke M, Giotti B, Lannagan T, Lozano-Ojalvo D, Hasson D, Tsankov AM, Sansom OJ, Marine JC, Barker N, Gargiulo G, Guccione E. A Mutation-driven oncofetal regression fuels phenotypic plasticity in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570854. [PMID: 38106050 PMCID: PMC10723414 DOI: 10.1101/2023.12.10.570854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Targeting cancer stem cells (CSCs) is crucial for effective cancer treatment 1 . However, the molecular mechanisms underlying resistance to LGR5 + CSCs depletion in colorectal cancer (CRC) 2,3 remain largely elusive. Here, we unveil the existence of a primitive cell state dubbed the oncofetal (OnF) state, which works in tandem with the LGR5 + stem cells (SCs) to fuel tumor evolution in CRC. OnF cells emerge early during intestinal tumorigenesis and exhibit features of lineage plasticity. Normally suppressed by the Retinoid X Receptor (RXR) in mature SCs, the OnF program is triggered by genetic deletion of the gatekeeper APC. We demonstrate that diminished RXR activity unlocks an epigenetic circuity governed by the cooperative action of YAP and AP1, leading to OnF reprogramming. This high-plasticity state is inherently resistant to conventional chemotherapies and its adoption by LGR5 + CSCs enables them to enter a drug-tolerant state. Furthermore, through phenotypic tracing and ablation experiments, we uncover a functional redundancy between the OnF and stem cell (SC) states and show that targeting both cellular states is essential for sustained tumor regression in vivo . Collectively, these findings establish a mechanistic foundation for developing effective combination therapies with enduring impact on CRC treatment.
Collapse
|
24
|
Heiser CN, Simmons AJ, Revetta F, McKinley ET, Ramirez-Solano MA, Wang J, Kaur H, Shao J, Ayers GD, Wang Y, Glass SE, Tasneem N, Chen Z, Qin Y, Kim W, Rolong A, Chen B, Vega PN, Drewes JL, Markham NO, Saleh N, Nikolos F, Vandekar S, Jones AL, Washington MK, Roland JT, Chan KS, Schürpf T, Sears CL, Liu Q, Shrubsole MJ, Coffey RJ, Lau KS. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 2023; 186:5620-5637.e16. [PMID: 38065082 PMCID: PMC10756562 DOI: 10.1016/j.cell.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.
Collapse
Affiliation(s)
- Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jiawei Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin Shao
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Gregory D Ayers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Sarah E Glass
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Qin
- Incendia Therapeutics, Inc., Boston, MA 02135, USA
| | - William Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fotis Nikolos
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith S Chan
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
26
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J, Tape CJ. An oncogenic phenoscape of colonic stem cell polarization. Cell 2023; 186:5554-5568.e18. [PMID: 38065080 DOI: 10.1016/j.cell.2023.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-β-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
Collapse
Affiliation(s)
- Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
27
|
Beach C, MacLean D, Majorova D, Melemenidis S, Nambiar DK, Kim RK, Valbuena GN, Guglietta S, Krieg C, Darvish-Damavandi M, Suwa T, Easton A, Hillson LV, McCulloch AK, McMahon RK, Pennel K, Edwards J, O’Cathail SM, Roxburgh CS, Domingo E, Moon EJ, Jiang D, Jiang Y, Zhang Q, Koong AC, Woodruff TM, Graves EE, Maughan T, Buczacki SJ, Stucki M, Le QT, Leedham SJ, Giaccia AJ, Olcina MM. Improving radiotherapy in immunosuppressive microenvironments by targeting complement receptor C5aR1. J Clin Invest 2023; 133:e168277. [PMID: 37824211 PMCID: PMC10688992 DOI: 10.1172/jci168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.
Collapse
Affiliation(s)
- Callum Beach
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - David MacLean
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dominika Majorova
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dhanya K. Nambiar
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Ryan K. Kim
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Gabriel N. Valbuena
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology
- Hollings Cancer Center, and
| | - Carsten Krieg
- Hollings Cancer Center, and
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Tatsuya Suwa
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Alistair Easton
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Lily V.S. Hillson
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Ross K. McMahon
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Pennel
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sean M. O’Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eui Jung Moon
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dadi Jiang
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanyan Jiang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Qingyang Zhang
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Albert C. Koong
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward E. Graves
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Tim Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Simon J.A. Buczacki
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Simon J. Leedham
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Amato J. Giaccia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Monica M. Olcina
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
28
|
Mehdawi LM, Ghatak S, Chakraborty P, Sjölander A, Andersson T. LGR5 Expression Predicting Poor Prognosis Is Negatively Correlated with WNT5A in Colon Cancer. Cells 2023; 12:2658. [PMID: 37998393 PMCID: PMC10670301 DOI: 10.3390/cells12222658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
WNT/β-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair β-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of β-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as β-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed β-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since β-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and β-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE 214 28 Malmö, Sweden; (S.G.); (P.C.); (A.S.)
| |
Collapse
|
29
|
Verhagen MP, Joosten R, Schmitt M, Valimaki N, Sacchetti A, Rajamaki K, Choi J, Procopio P, Silva S, van der Steen B, van den Bosch TPP, Seinstra D, Doukas M, Augenlicht LH, Aaltonen LA, Fodde R. The origin of intestinal cancer in the context of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560432. [PMID: 37873142 PMCID: PMC10592905 DOI: 10.1101/2023.10.02.560432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, was shown to suppress intestinal stemness. Here, we employed Paneth cells (PCs) as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation. Upon inflammation, PC-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in inflammatory bowel disease (IBD) patients but also of a larger fraction of sporadic colon cancers. The latter is likely due to the inflammatory consequences of Western-style dietary habits, the major colon cancer risk factor. Computational methods designed to predict the cell-of-origin of cancer confirmed that, in a substantial fraction of sporadic colon cancers the cells-of-origin are secretory lineages and not stem cells.
Collapse
|
30
|
Sun M, Tan Z, Lin K, Li X, Zhu J, Zhan L, Zheng H. Advanced Progression for the Heterogeneity and Homeostasis of Intestinal Stem Cells. Stem Cell Rev Rep 2023; 19:2109-2119. [PMID: 37351833 DOI: 10.1007/s12015-023-10578-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Current understanding of the leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in intestinal stem cells (ISCs) is well established, however, the implications of ISC heterogeneity and homeostasis are poorly understood. Prior studies have provided important evidence for the association between heterogeneity of ISC pools with pathogenesis and therapeutic response of malignant disease. Leveraging the advantages of organoids and single cell RNA sequencing (scRNA-seq), glandular development has been simulated and cell heterogeneity has been clarified. Based on this research, several potential ISCs were identified, such as LGR5 + p27 + quiescent ISCs, LGR5 + Mex3a + slowly proliferating stem cells, and CLU + reverse stem cells. We also illustrated major factors responsible for ISC homeostasis including metabolism-related (LKB1, TGR5, HMGCS2), inflammation-related (IFB-b, IFN2, TNF), and Wnt signaling-related (CREPT, Mex3a, MTG16) factors. ISCs play complex roles in intestinal tumorigenesis, chemoresistance and occasional relapse of colon cancer, which bear discussion. In this review, we focus on novel technical challenges in ISCs fate drawing upon recent research with the goals of clarifying our understanding of complex ISCs, elucidating the integrated intestinal crypt niche, and creating new opportunities for therapeutic development.
Collapse
Affiliation(s)
- Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Keqiong Lin
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaofei Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Jicheng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
31
|
Moorman AR, Cambuli F, Benitez EK, Jiang Q, Xie Y, Mahmoud A, Lumish M, Hartner S, Balkaran S, Bermeo J, Asawa S, Firat C, Saxena A, Luthra A, Sgambati V, Luckett K, Wu F, Li Y, Yi Z, Masilionis I, Soares K, Pappou E, Yaeger R, Kingham P, Jarnagin W, Paty P, Weiser MR, Mazutis L, D'Angelica M, Shia J, Garcia-Aguilar J, Nawy T, Hollmann TJ, Chaligné R, Sanchez-Vega F, Sharma R, Pe'er D, Ganesh K. Progressive plasticity during colorectal cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553925. [PMID: 37662289 PMCID: PMC10473595 DOI: 10.1101/2023.08.18.553925] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Metastasis is the principal cause of cancer death, yet we lack an understanding of metastatic cell states, their relationship to primary tumor states, and the mechanisms by which they transition. In a cohort of biospecimen trios from same-patient normal colon, primary and metastatic colorectal cancer, we show that while primary tumors largely adopt LGR5 + intestinal stem-like states, metastases display progressive plasticity. Loss of intestinal cell states is accompanied by reprogramming into a highly conserved fetal progenitor state, followed by non-canonical differentiation into divergent squamous and neuroendocrine-like states, which is exacerbated by chemotherapy and associated with poor patient survival. Using matched patient-derived organoids, we demonstrate that metastatic cancer cells exhibit greater cell-autonomous multilineage differentiation potential in response to microenvironment cues than their intestinal lineage-restricted primary tumor counterparts. We identify PROX1 as a stabilizer of intestinal lineage in the fetal progenitor state, whose downregulation licenses non-canonical reprogramming.
Collapse
|
32
|
Xia L, Chen Y, Li J, Wang J, Shen K, Zhao A, Jin H, Zhang G, Xi Q, Xia S, Shi T, Li R. B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway. Chin Med J (Engl) 2023; 136:1977-1989. [PMID: 37488673 PMCID: PMC10431251 DOI: 10.1097/cm9.0000000000002772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism. METHODS GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis. RESULTS B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02). CONCLUSIONS B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.
Collapse
Affiliation(s)
- Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215000, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
33
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
34
|
Choi J, Zhang X, Li W, Houston M, Peregrina K, Dubin R, Ye K, Augenlicht L. Dynamic Intestinal Stem Cell Plasticity and Lineage Remodeling by a Nutritional Environment Relevant to Human Risk for Tumorigenesis. Mol Cancer Res 2023; 21:808-824. [PMID: 37097719 PMCID: PMC10390890 DOI: 10.1158/1541-7786.mcr-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
New Western-style diet 1 (NWD1), a purified diet establishing mouse exposure to key nutrients recapitulating levels that increase human risk for intestinal cancer, reproducibly causes mouse sporadic intestinal and colonic tumors reflecting human etiology, incidence, frequency, and lag with developmental age. Complex NWD1 stem cell and lineage reprogramming was deconvolved by bulk and single-cell RNA sequencing, single-cell Assay for Transposase-Accessible Chromatin using sequencing, functional genomics, and imaging. NWD1 extensively, rapidly, and reversibly, reprogrammed Lgr5hi stem cells, epigenetically downregulating Ppargc1a expression, altering mitochondrial structure and function. This suppressed Lgr5hi stem cell functions and developmental maturation of Lgr5hi cell progeny as cells progressed through progenitor cell compartments, recapitulated by Ppargc1a genetic inactivation in Lgr5hi cells in vivo. Mobilized Bmi1+, Ascl2hi cells adapted lineages to the nutritional environment and elevated antigen processing and presentation pathways, especially in mature enterocytes, causing chronic, protumorigenic low-level inflammation. There were multiple parallels between NWD1 remodeling of stem cells and lineages with pathogenic mechanisms in human inflammatory bowel disease, also protumorigenic. Moreover, the shift to alternate stem cells reflects that the balance between Lgr5-positive and -negative stem cells in supporting human colon tumors is determined by environmental influences. Stem cell and lineage plasticity in response to nutrients supports historic concepts of homeostasis as a continual adaptation to environment, with the human mucosa likely in constant flux in response to changing nutrient exposures. IMPLICATIONS Although oncogenic mutations provide a competitive advantage to intestinal epithelial cells in clonal expansion, the competition is on a playing field dynamically sculpted by the nutritional environment, influencing which cells dominate in mucosal maintenance and tumorigenesis.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Wenge Li
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Michele Houston
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Karina Peregrina
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Robert Dubin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Leonard Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
35
|
Pikkupeura LM, Bressan RB, Guiu J, Chen Y, Maimets M, Mayer D, Schweiger PJ, Hansen SL, Maciag GJ, Larsen HL, Lõhmussaar K, Pedersen MT, Teves JMY, Bornholdt J, Benes V, Sandelin A, Jensen KB. Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation. SCIENCE ADVANCES 2023; 9:eadf9460. [PMID: 37436997 DOI: 10.1126/sciadv.adf9460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
During intestinal organogenesis, equipotent epithelial progenitors mature into phenotypically distinct stem cells that are responsible for lifelong maintenance of the tissue. While the morphological changes associated with the transition are well characterized, the molecular mechanisms underpinning the maturation process are not fully understood. Here, we leverage intestinal organoid cultures to profile transcriptional, chromatin accessibility, DNA methylation, and three-dimensional (3D) chromatin conformation landscapes in fetal and adult epithelial cells. We observed prominent differences in gene expression and enhancer activity, which are accompanied by local changes in 3D organization, DNA accessibility, and methylation between the two cellular states. Using integrative analyses, we identified sustained Yes-Associated Protein (YAP) transcriptional activity as a major gatekeeper of the immature fetal state. We found the YAP-associated transcriptional network to be regulated at various levels of chromatin organization and likely to be coordinated by changes in extracellular matrix composition. Together, our work highlights the value of unbiased profiling of regulatory landscapes for the identification of key mechanisms underlying tissue maturation.
Collapse
Affiliation(s)
- Laura M Pikkupeura
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Raul B Bressan
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jordi Guiu
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 3a planta, Av. Granvia de l'Hospitalet 199, Hospitalet de Llobregat 08908, Spain
| | - Yun Chen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Martti Maimets
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Daniela Mayer
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Pawel J Schweiger
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Stine L Hansen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Grzegorz J Maciag
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Hjalte L Larsen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kadi Lõhmussaar
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Joji M Yap Teves
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jette Bornholdt
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Albin Sandelin
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
36
|
Hansen SL, Larsen HL, Pikkupeura LM, Maciag G, Guiu J, Müller I, Clement DL, Mueller C, Johansen JV, Helin K, Lerdrup M, Jensen KB. An organoid-based CRISPR-Cas9 screen for regulators of intestinal epithelial maturation and cell fate. SCIENCE ADVANCES 2023; 9:eadg4055. [PMID: 37436979 DOI: 10.1126/sciadv.adg4055] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Generation of functionally mature organs requires exquisite control of transcriptional programs governing cell state transitions during development. Despite advances in understanding the behavior of adult intestinal stem cells and their progeny, the transcriptional regulators that control the emergence of the mature intestinal phenotype remain largely unknown. Using mouse fetal and adult small intestinal organoids, we uncover transcriptional differences between the fetal and adult state and identify rare adult-like cells present in fetal organoids. This suggests that fetal organoids have an inherent potential to mature, which is locked by a regulatory program. By implementing a CRISPR-Cas9 screen targeting transcriptional regulators expressed in fetal organoids, we establish Smarca4 and Smarcc1 as important factors safeguarding the immature progenitor state. Our approach demonstrates the utility of organoid models in the identification of factors regulating cell fate and state transitions during tissue maturation and reveals that SMARCA4 and SMARCC1 prevent precocious differentiation during intestinal development.
Collapse
Affiliation(s)
- Stine L Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Hjalte L Larsen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Laura M Pikkupeura
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Grzegorz Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jordi Guiu
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 3a planta, Av. Granvia de l'Hospitalet 199, 08908 Hospitalet de Llobregat, Spain
| | - Iris Müller
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Ditte L Clement
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Christina Mueller
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mads Lerdrup
- The DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
37
|
Zhao Y, Lu T, Song Y, Wen Y, Deng Z, Fan J, Zhao M, Zhao R, Luo Y, xie J, Hu B, Sun H, Wang Y, He S, Gong Y, Cheng J, Liu X, Yu L, Li J, Li C, Shi Y, Huang Q. Cancer Cells Enter an Adaptive Persistence to Survive Radiotherapy and Repopulate Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204177. [PMID: 36658726 PMCID: PMC10015890 DOI: 10.1002/advs.202204177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo- or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a "radiation-tolerant persister" (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding-like division, and type I interferon-mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation-persistence by poly- and de-polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.
Collapse
Affiliation(s)
- Yucui Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Tingting Lu
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Yanwei Song
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yanqin Wen
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
| | - Zheng Deng
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jiahui Fan
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
| | - Minghui Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Ruyi Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yuntao Luo
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jianzhu xie
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Binjie Hu
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Haoran Sun
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yiwei Wang
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Sijia He
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yanping Gong
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jin Cheng
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Xinjian Liu
- Department of BiochemistrySchool of MedicineSun Yat‐sen UniversityShenzhen518107China
| | - Liang Yu
- Department of General SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jikun Li
- Department of General SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Chuanyuan Li
- Department of DermatologyDuke University Medical CenterBox 3135DurhamNC27710USA
| | - Yongyong Shi
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio‐X Institutes)Qingdao UniversityQingdao266003China
| | - Qian Huang
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
38
|
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev 2023; 42:197-215. [PMID: 36757577 PMCID: PMC10014678 DOI: 10.1007/s10555-023-10092-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
Collapse
|
39
|
King CM, Marx OM, Ding W, Koltun WA, Yochum GS. TCF7L1 Regulates LGR5 Expression in Colorectal Cancer Cells. Genes (Basel) 2023; 14:481. [PMID: 36833408 PMCID: PMC9956233 DOI: 10.3390/genes14020481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC), in part, by deregulating expression of genes controlled by the T-cell factor (TCF) family of transcription factors. TCFs contain a conserved DNA binding domain that mediates association with TCF binding elements (TBEs) within Wnt-responsive DNA elements (WREs). Intestinal stem cell marker, leucine-rich-repeat containing G-protein-coupled receptor 5 (LGR5), is a Wnt target gene that has been implicated in CRC stem cell plasticity. However, the WREs at the LGR5 gene locus and how TCF factors directly regulate LGR5 gene expression in CRC have not been fully defined. Here, we report that TCF family member, TCF7L1, plays a significant role in regulating LGR5 expression in CRC cells. We demonstrate that TCF7L1 binds to a novel promoter-proximal WRE through association with a consensus TBE at the LGR5 locus to repress LGR5 expression. Using CRISPR activation and interference (CRISPRa/i) technologies to direct epigenetic modulation, we demonstrate that this WRE is a critical regulator of LGR5 expression and spheroid formation capacity of CRC cells. Furthermore, we found that restoring LGR5 expression rescues the TCF7L1-mediated reduction in spheroid formation efficiency. These results demonstrate a role for TCF7L1 in repressing LGR5 gene expression to govern the spheroid formation potential of CRC cells.
Collapse
Affiliation(s)
- Carli M. King
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17036, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Olivia M. Marx
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17036, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Wei Ding
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Walter A. Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17036, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| |
Collapse
|
40
|
Verhagen MP, Joosten R, Schmitt M, Sacchetti A, Choi J, Välimäki N, Aaltonen LA, Augenlicht LH, Fodde R. Paneth cells as the origin of intestinal cancer in the context of inflammation. RESEARCH SQUARE 2023:rs.3.rs-2458794. [PMID: 36711533 PMCID: PMC9882659 DOI: 10.21203/rs.3.rs-2458794/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Paneth cells (PCs), responsible for the secretion of antimicrobial peptides in the small intestine and for niche support to Lgr5+ crypt-base columnar stem cells (CBCs), have been shown to respond to inflammation by dedifferentiating into stem-like cells in order to sustain a regenerative response1,2. Therefore, PCs may represent the cells-of-origin of intestinal cancer in the context of inflammation. To test this hypothesis, we targeted Apc, Kras, and Tp53 mutations in Paneth cells by Cre-Lox technology and modelled inflammation by dextran sodium sulfate (DSS) administration. PC-specific loss of Apc resulted in multiple small intestinal tumors, whereas Kras or Tp53 mutations did not. Compound Apc and Kras mutations in PCs resulted in a striking increase in tumor multiplicity even in the absence of the inflammatory insult. By combining scRNAseq with lineage tracing to capture the conversion of PCs into bona fide tumor cells, we show that they progress through a "revival stem cell" (RSC) state characterized by high Clusterin (Clu) expression and Yap1 signaling, reminiscent of what has been previously observed upon irradiation of the mouse digestive tract3. Accordingly, comparison of PC- and Lgr5-derived murine intestinal tumors revealed differences related to Wnt signaling and inflammatory pathways which match the dichotomy of CBCs and injury-induced RSCs4 between human sporadic colon cancers and those arising in the context of inflammatory bowel diseases. Last, we show that western-style dietary habits, known to trigger a low-grade inflammation throughout the intestinal tract, underlie the analogous dedifferentiation of Paneth cells and their acquisition of stem-like features. Taken together, our results show that intestinal cancer arises in the context of inflammation through the dedifferentiation of committed secretory lineages such as Paneth cells and the activation of the revival stem cell state. As such, a true quiescent stem cell identity may be hidden in fully committed and postmitotic lineages which, upon inflammation, support the regenerative response by re-entering the cell cycle and dedifferentiating into RSCs. The chronic nature of the tissue insult in inflammatory bowel diseases and even in the context of western-style dietary habits is likely to result in the expansion of cell targets for tumor initiation and progression.
Collapse
Affiliation(s)
- Mathijs P. Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Schmitt
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Pharmacology, University of Marburg, Germany
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, U.S.A
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Lauri A. Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Williams NG, Parry L. Balancing the scales: Do healthy lifestyle choices offset the colorectal cancer risk of unhealthy choices? EFOOD 2022. [DOI: 10.1002/efd2.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Non G. Williams
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| | - Lee Parry
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| |
Collapse
|
42
|
Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature 2022; 611:603-613. [DOI: 10.1038/s41586-022-05402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
|