1
|
Paavolainen O, Peurla M, Koskinen LM, Pohjankukka J, Saberi K, Tammelin E, Sulander SR, Valkonen M, Mourao L, Boström P, Brück N, Ruusuvuori P, Scheele CLGJ, Hartiala P, Peuhu E. Volumetric analysis of the terminal ductal lobular unit architecture and cell phenotypes in the human breast. Cell Rep 2024; 43:114837. [PMID: 39368089 DOI: 10.1016/j.celrep.2024.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The major lactiferous ducts of the human breast branch out and end at terminal ductal lobular units (TDLUs). Despite their functional and clinical importance, the three-dimensional (3D) architecture of TDLUs has remained undetermined. Our quantitative and volumetric imaging of healthy human breast tissue demonstrates that highly branched TDLUs, which exhibit increased proliferation, are uncommon in the resting tissue regardless of donor age, parity, or hormonal contraception. Overall, TDLUs have a consistent shape and branch parameters, and they contain a main subtree that dominates in bifurcation events and exhibits a more duct-like keratin expression pattern. Simulation of TDLU branching morphogenesis in three dimensions suggests that evolutionarily conserved mechanisms regulate mammary gland branching in humans and mice despite their anatomical differences. In all, our data provide structural insight into 3D anatomy and branching of the human breast and exemplify the power of volumetric imaging in gaining a deeper understanding of breast biology.
Collapse
Affiliation(s)
- Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Pohjankukka
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Kamyab Saberi
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ella Tammelin
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Suvi-Riitta Sulander
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Masi Valkonen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Larissa Mourao
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Nina Brück
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pekka Ruusuvuori
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Hartiala
- University of Turku, 20520 Turku, Finland; Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland; Medicity Research Laboratories and InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
2
|
Ciwinska M, Messal HA, Hristova HR, Lutz C, Bornes L, Chalkiadakis T, Harkes R, Langedijk NSM, Hutten SJ, Menezes RX, Jonkers J, Prekovic S, Simons BD, Scheele CLGJ, van Rheenen J. Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 2024; 633:198-206. [PMID: 39232148 PMCID: PMC11374684 DOI: 10.1038/s41586-024-07882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.
Collapse
Affiliation(s)
- Marta Ciwinska
- VIB-KULeuven Centre for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hristina R Hristova
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nathalia S M Langedijk
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan J Hutten
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Prekovic
- Centre for Molecular Medicine, UMC Utrecht, Utrecht, the Netherlands
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| | | | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Yaghjyan L, Heng YJ, Baker GM, Bret-Mounet VC, Murthy D, Mahoney MB, Rosner B, Tamimi RM. Associations of reproductive breast cancer risk factors with expression of stem cell markers in benign breast tissue. Front Oncol 2024; 14:1354094. [PMID: 38577336 PMCID: PMC10991780 DOI: 10.3389/fonc.2024.1354094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Background We investigated the associations of reproductive factors known to influence breast cancer risk with the expression of breast stem cell markers CD44, CD24, and ALDH1A1 in benign breast biopsy samples. Methods We included 439 cancer-free women with biopsy-confirmed benign breast disease within the Nurses' Health Study (NHS) and NHSII. The data on reproductive and other breast cancer risk factors were obtained from biennial questionnaires. Immunohistochemistry (IHC) was performed on tissue microarrays. For each core, the IHC expression was assessed using a semi-automated platform and expressed as % of cells that stained positive for a specific marker out of the total cell count. Generalized linear regression was used to examine the associations of reproductive factors with a log-transformed expression of each marker (in epithelium and stroma), adjusted for other breast cancer risk factors. Results In multivariate analysis, the time between menarche and age at first birth was inversely associated with CD44 in epithelium (β per 5 years = -0.38, 95% CI -0.69; -0.06). Age at first birth and the time between menarche and age at first birth were inversely associated with ALDH1A1 (stroma: β per 5 years = -0.43, 95% CI -0.76; -0.10 and β = -0.47, 95% CI -0.79; -0.15, respectively; epithelium: β = -0.15, 95% CI -0.30; -0.01 and β = -0.17, 95% CI -0.30; -0.03, respectively). Time since last pregnancy was inversely associated with stromal ALDH1A1 (β per 5 years = -0.55, 95% CI -0.98; -0.11). No associations were found for CD24. The observed associations were similar in premenopausal women. In postmenopausal women, lifetime duration of breastfeeding was inversely associated with stromal ALDH1A1 expression (β for ≥24 vs. 0 to <1 months = -2.24, 95% CI 3.96; -0.51, p-trend = 0.01). Conclusion Early-life reproductive factors may influence CD44 and ALDH1A1 expression in benign breast tissue.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Yujing J. Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle M. Baker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vanessa C. Bret-Mounet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Matt B. Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Rulla M. Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Coradini D. Impact of De Novo Cholesterol Biosynthesis on the Initiation and Progression of Breast Cancer. Biomolecules 2024; 14:64. [PMID: 38254664 PMCID: PMC10813427 DOI: 10.3390/biom14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Cholesterol (CHOL) is a multifaceted lipid molecule. It is an essential structural component of cell membranes, where it cooperates in regulating the intracellular trafficking and signaling pathways. Additionally, it serves as a precursor for vital biomolecules, including steroid hormones, isoprenoids, vitamin D, and bile acids. Although CHOL is normally uptaken from the bloodstream, cells can synthesize it de novo in response to an increased requirement due to physiological tissue remodeling or abnormal proliferation, such as in cancer. Cumulating evidence indicated that increased CHOL biosynthesis is a common feature of breast cancer and is associated with the neoplastic transformation of normal mammary epithelial cells. After an overview of the multiple biological activities of CHOL and its derivatives, this review will address the impact of de novo CHOL production on the promotion of breast cancer with a focus on mammary stem cells. The review will also discuss the effect of de novo CHOL production on in situ and invasive carcinoma and its impact on the response to adjuvant treatment. Finally, the review will discuss the present and future therapeutic strategies to normalize CHOL biosynthesis.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, 20133 Milan, Italy
| |
Collapse
|
6
|
Ductal keratin 15 + luminal progenitors in normal breast exhibit a basal-like breast cancer transcriptomic signature. NPJ Breast Cancer 2022; 8:81. [PMID: 35821504 PMCID: PMC9276673 DOI: 10.1038/s41523-022-00444-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15+ (K15+) progenitors enriched in ducts. Spatial mapping of luminal progenitors is confirmed at the protein level by staining with critical duct markers. Comparison of the gene expression profiles of normal luminal cells with those of breast cancer subtypes suggests a strong correlation between normal breast ductal progenitors and basal-like breast cancer. We propose that K15+ basal-like breast cancers originate in ductal progenitors, which emphasizes the importance of not only lineages but also cellular position within the ductal-lobular tree.
Collapse
|
7
|
Gray GK, Li CMC, Rosenbluth JM, Selfors LM, Girnius N, Lin JR, Schackmann RCJ, Goh WL, Moore K, Shapiro HK, Mei S, D'Andrea K, Nathanson KL, Sorger PK, Santagata S, Regev A, Garber JE, Dillon DA, Brugge JS. A human breast atlas integrating single-cell proteomics and transcriptomics. Dev Cell 2022; 57:1400-1420.e7. [PMID: 35617956 DOI: 10.1016/j.devcel.2022.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Carman Man-Chung Li
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jennifer M Rosenbluth
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Jia-Ren Lin
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Walter L Goh
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Kaitlin Moore
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Hana K Shapiro
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Shaolin Mei
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Kurt D'Andrea
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter K Sorger
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Sandro Santagata
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA.
| |
Collapse
|
8
|
Goldhammer N, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation. Commun Biol 2022; 5:219. [PMID: 35273332 PMCID: PMC8913783 DOI: 10.1038/s42003-022-03161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including α-smooth muscle actin (α-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with mutant PIK3CA on an shp53 background. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies. Breast myoepithelial cells are characterised using single cell sequencing, where they are distinguished by CD200 expression. Distinct properties of CD200-low and CD200-high are found, which suggest that CD200-low cells are multipotent, whereas CD200-high cells are bipotent.
Collapse
Affiliation(s)
- Nadine Goldhammer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
9
|
West J, Schenck RO, Gatenbee C, Robertson-Tessi M, Anderson ARA. Normal tissue architecture determines the evolutionary course of cancer. Nat Commun 2021; 12:2060. [PMID: 33824323 PMCID: PMC8024392 DOI: 10.1038/s41467-021-22123-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer growth can be described as a caricature of the renewal process of the tissue of origin, where the tissue architecture has a strong influence on the evolutionary dynamics within the tumor. Using a classic, well-studied model of tumor evolution (a passenger-driver mutation model) we systematically alter spatial constraints and cell mixing rates to show how tissue structure influences functional (driver) mutations and genetic heterogeneity over time. This approach explores a key mechanism behind both inter-patient and intratumoral tumor heterogeneity: competition for space. Time-varying competition leads to an emergent transition from Darwinian premalignant growth to subsequent invasive neutral tumor growth. Initial spatial constraints determine the emergent mode of evolution (Darwinian to neutral) without a change in cell-specific mutation rate or fitness effects. Driver acquisition during the Darwinian precancerous stage may be modulated en route to neutral evolution by the combination of two factors: spatial constraints and limited cellular mixing. These two factors occur naturally in ductal carcinomas, where the branching topology of the ductal network dictates spatial constraints and mixing rates.
Collapse
Affiliation(s)
- Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chandler Gatenbee
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
10
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
A CD146 FACS Protocol Enriches for Luminal Keratin 14/19 Double Positive Human Breast Progenitors. Sci Rep 2019; 9:14843. [PMID: 31619692 PMCID: PMC6795797 DOI: 10.1038/s41598-019-50903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Human breast cancer is believed to arise in luminal progenitors within the normal breast. A subset of these are double positive (DP) for basal and luminal keratins and localizes to a putative stem cell zone within ducts. We here present a new protocol based on a combination of CD146 with CD117 and CD326 which provides an up to thirty fold enrichment of the DP cells. We show by expression profiling, colony formation, and morphogenesis that CD146high/CD117high/CD326high DP cells belong to a luminal progenitor compartment. While these DP cells are located quite uniformly in ducts, with age a variant type of DP (vDP) cells, which is mainly CD146-negative, accumulates in lobules. Intriguingly, in specimens with BRCA1 mutations known to predispose for cancer, higher frequencies of lobular vDP cells are observed. We propose that vDP cells are strong candidates for tracing the cellular origin of breast cancer.
Collapse
|
12
|
Microridges are apical epithelial projections formed of F-actin networks that organize the glycan layer. Sci Rep 2019; 9:12191. [PMID: 31434932 PMCID: PMC6704121 DOI: 10.1038/s41598-019-48400-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
Apical projections are integral functional units of epithelial cells. Microvilli and stereocilia are cylindrical apical projections that are formed of bundled actin. Microridges on the other hand, extend laterally, forming labyrinthine patterns on surfaces of various kinds of squamous epithelial cells. So far, the structural organization and functions of microridges have remained elusive. We have analyzed microridges on zebrafish epidermal cells using confocal and electron microscopy methods including electron tomography, to show that microridges are formed of F-actin networks and require the function of the Arp2/3 complex for their maintenance. During development, microridges begin as F-actin punctae showing signatures of branching and requiring an active Arp2/3 complex. Using inhibitors of actin polymerization and the Arp2/3 complex, we show that microridges organize the surface glycan layer. Our analyses have unraveled the F-actin organization supporting the most abundant and evolutionarily conserved apical projection, which functions in glycan organization.
Collapse
|
13
|
Qiu Y, Wang L, Zhong X, Li L, Chen F, Xiao L, Liu F, Fu B, Zheng H, Ye F, Bu H. A multiple breast cancer stem cell model to predict recurrence of T 1-3, N 0 breast cancer. BMC Cancer 2019; 19:729. [PMID: 31340763 PMCID: PMC6657050 DOI: 10.1186/s12885-019-5941-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Local or distant relapse is the key event for the overall survival of early-stage breast cancer after initial surgery. A small subset of breast cancer cells, which share similar properties with normal stem cells, has been proven to resist to clinical therapy contributing to recurrence. Methods In this study, we aimed to develop a prognostic model to predict recurrence based on the prevalence of breast cancer stem cells (BCSCs) in breast cancer. Immunohistochemistry and dual-immunohistochemistry were performed to quantify the stem cells of the breast cancer patients. The performance of Cox proportional hazard regression model was assessed using the holdout methods, where the dataset was randomly split into two exclusive sets (70% training and 30% testing sets). Additionally, we performed bootstrapping to overcome a possible biased error estimate and obtain confidence intervals (CI). Results Four groups of BCSCs (ALDH1A3, CD44+/CD24−, integrin alpha 6 (ITGA6), and protein C receptor (PROCR)) were identified as associated with relapse-free survival (RFS). The correlated biomarkers were integrated as a prognostic panel to calculate a relapse risk score (RRS) and to classify the patients into different risk groups (high-risk or low-risk). According to RRS, 67.81 and 32.19% of patients were categorized into low-risk and high-risk groups respectively. The relapse rate at 5 years in the low-risk group (2.67, 95% CI: 0.72–4.63%) by Kaplan-Meier method was significantly lower than that of the high-risk group (19.30, 95% CI: 12.34–26.27%) (p < 0.001). In the multiple Cox model, the RRS was proven to be a powerful classifier independent of age at diagnosis or tumour size (p < 0.001). In addition, we found that high RRS score ER-positive patients do not benefit from hormonal therapy treatment (RFS, p = 0.860). Conclusion The RRS model can be applied to predict the relapse risk in early stage breast cancer. As such, high RRS score ER-positive patients do not benefit from hormonal therapy treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5941-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Qiu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liya Wang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaorong Zhong
- Laboratory of Molecular Diagnosis of Cancer & Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Xiao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyu Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Fu
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer & Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Ye
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China. .,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China. .,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
El-Tahawy NFG, Rifaai RA. Immunohistochemical and ultrastructural evidence for telocytes in the different physiological stages of the female rat mammary gland. Life Sci 2019; 231:116521. [PMID: 31152814 DOI: 10.1016/j.lfs.2019.05.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Telocytes (TCs) are recently described to integrate a variety of different cells. AIM OF THE WORK The aim was to investigate the presence of TCs in the rat mammary gland at its different physiological stages. MATERIAL AND METHODS Twenty four adult female albino rats were classified into 4 groups: resting, mid-pregnancy, lactating, and involution groups. Inguinal mammary glands were processed for immunohistochemical and transmission electron microscopic (TEM) examination. RESULTS TCs were immune-positive for c-kit and CD34 and showed significant differences in the different studied groups indicating variable roles at the different stages. TEM results characterized TCs by its shape and the long slender and moniliform telopodes linking the cells into stromal networks. The extracellular exosomes, homo-cellular synapsis and hetero-cellular synapsis were observed. CONCLUSION Our study provides evidence for the presence of TCs in all stages of the gland; not only in the resting stage as proved by other studies, but with immune-labeling differences suggesting different structural and physiological roles of TCs according to the stage requirements. These functions might via controlling the proliferation during pregnancy and lactation and the involution of the gland after weaning. Thus, more future functional studies of TCs will be important to help understanding the mechanism by which TCs contribute to tissue homeostasis concerning the role of the stromal/epithelial interactions in mammary gland biology and pathology including breast cancer which would be revolutionary for future therapeutic applications.
Collapse
Affiliation(s)
| | - Rehab Ahmed Rifaai
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
15
|
Timmermans-Sprang E, Collin R, Henkes A, Philipsen M, Mol JA. P-cadherin mutations are associated with high basal Wnt activity and stemness in canine mammary tumor cell lines. Oncotarget 2019; 10:2930-2946. [PMID: 31105876 PMCID: PMC6508207 DOI: 10.18632/oncotarget.26873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose: To find underlying mutations causing highly-activated Wnt activity in mammary tumor cell lines associated with rounded morphology indicative of stemness/EMT. Methods: Stemness of high Wnt cell lines was confirmed using qPCR on selected genes and microRNA profiling, followed by whole-exome sequencing of 3 high Wnt canine mammary tumor cell lines and 5 low/absent Wnt cell lines. Candidate genes were identified and their involvement in Wnt activity investigated using siRNA silencing. Results: The high Wnt cell lines had morphological and gene expression characteristics reminiscent of stemness. All individual cell lines had about 4000 mutations in the exome in comparison to the reference canine genome. The three high basal Wnt cell lines had 167 unique exome mutations. Seven of these mutations resulted in a SIFT score <0.2 of proteins related to Wnt signaling. However, gene silencing did not change the Wnt pathway activation. Renewed analysis with respect to putative relations to Wnt signaling revealed that P-cadherin (CDH3) had three mutations in the coding region of the extracellular domain and was associated with high Wnt signaling. Silencing by siRNA not only in lowered Wnt activity, but also decreased levels of phosphorylated cSRC and sP-cad, and changed cell morphology towards spindle cell appearance. Conclusion: It is concluded that expression of mutated CDH3 is associated with activation of cSRC, stabilization of ß-catenin and a rounded morphology related to a stemness/EMT phenotype. A decreased Wnt activity can be found also by cSRC inhibition, but CDH3 silencing has an additional effect on morphology indicating reversal of EMT.
Collapse
Affiliation(s)
- Elpetra Timmermans-Sprang
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rob Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen Henkes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meike Philipsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
French R, Tornillo G. Heterogeneity of Mammary Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:119-140. [PMID: 31487022 DOI: 10.1007/978-3-030-24108-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult female mammals are endowed with the unique ability to produce milk for nourishing their newborn offspring. Milk is secreted on demand by the mammary gland, an organ which develops during puberty, further matures during pregnancy and lactation, but reverts to a resting state after weaning. The glandular tissue (re)generated through this series of structural and functional changes is finely sourced by resident stem cells under the control of systemic hormones and local stimuli.Over the past decades a plethora of studies have been carried out in order to identify and characterize mammary stem cells, primarily in mice and humans. Intriguingly, it is now emerging that multiple mammary stem cell pools (co)exist and are characterized by distinctive molecular markers and context-dependent functions.This chapter reviews the heterogeneity of the mammary stem cell compartment with emphasis on the key properties and molecular regulators of distinct stem cell populations in both the mouse and human glands.
Collapse
Affiliation(s)
- Rhiannon French
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
17
|
Kim J, Villadsen R. Expression of Luminal Progenitor Marker CD117 in the Human Breast Gland. J Histochem Cytochem 2018; 66:879-888. [PMID: 30004288 DOI: 10.1369/0022155418788845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD117 is a putative marker of luminal progenitor cells in the human breast. However, so far mapping the expression pattern of CD117 within the normal gland has not been reported. Here, we examined the anatomical distribution of CD117-expressing cells in lobular and ductal structures by immunohistochemistry. The presence of CD117-positive luminal cells could be divided into three distinct patterns: (1) contiguous, with coherent positive cells and rare negative cells interspaced; (2) patched, with a roughly equal frequency of positive and negative cells distributed focally; or (3) scattered, with few or no positive cells in the structure. Generally, a patched or scattered expression pattern was more frequent in lobules compared with ducts. Furthermore, an age-correlated increase in heterogeneity was observed. When comparing women below and above 21 years of age this heterogeneity was evident for both lobules and ducts. Although CD117-expression was generally segregated from luminal-lineage transcription factor GATA3-positive cells, some did co-express both markers. Finally, co-staining with Ki-67 revealed that a prominent part of cycling cells belonged to the CD117-positive population. Together these data demonstrate the presence of a CD117-expressing progenitor compartment with the capacity to replenish the luminal lineage of the breast gland.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Cellular and Molecular Medicine, and Novo Nordisk Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, and Novo Nordisk Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Johnson MB, Hoffmann JN, You HM, Lastra RR, Fernandez S, Strober JW, Allaw AB, Brady MJ, Conzen SD, McClintock MK. Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 2018; 23:59-73. [PMID: 29687293 PMCID: PMC6207373 DOI: 10.1007/s10911-018-9392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
Exposure to psychosocial stressors and ensuing stress physiology have been associated with spontaneous invasive mammary tumors in the Sprague-Dawley rat model of human breast cancer. Mammary gland (MG) development is a time when physiologic and environmental exposures influence breast cancer risk. However, the effect of psychosocial stress exposure on MG development remains unknown. Here, in the first comprehensive longitudinal study of MG development in nulliparous female rats (from puberty through young adulthood; 8-25 wks of age), we quantify the spatial gradient of differentiation within the MG of socially stressed (isolated) and control (grouped) rats. We then demonstrate that social isolation increased stress reactivity to everyday stressors, resulting in downregulation of glucocorticoid receptor (GR) expression in the MG epithelium. Surprisingly, given that chemical carcinogens increase MG cancer risk by preventing normal terminal end bud (TEB) differentiation, chronic isolation stress did not alter TEBs. Instead, isolation blunted MG growth and alveolobular differentiation and reduced epithelial cell proliferation in these structures. Social isolation also enhanced corpora luteal progesterone at all ages but reduced estrogenization only in early adulthood, a pattern that precludes modulated ovarian function as a sufficient mechanism for the effects of isolation on MG development. This longitudinal study of natural variation provides an integrated view of MG development and the importance of increased GR activation in nulliparous ductal growth and alveolobular differentiation. Thus, social isolation and its physiological sequelae disrupt MG growth and differentiation and suggest a contribution of stress exposure during puberty and young adulthood to the previously observed increase in invasive MG cancer observed in chronically socially-isolated adult Sprague-Dawley rats.
Collapse
Affiliation(s)
- Marianna B Johnson
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Hannah M You
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ahmad B Allaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzanne D Conzen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Martha K McClintock
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
- Departments of Psychology and Comparative Human Development, The University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, Lee M, Hill D, Madden J, Boerner J, Cote ML, Sartor MA, Rozek LS, Wicha MS. Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling. Stem Cell Reports 2018; 10:1596-1609. [PMID: 29606612 PMCID: PMC5995162 DOI: 10.1016/j.stemcr.2018.03.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
During development, the mammary gland undergoes extensive remodeling driven by stem cells. Breast cancers are also hierarchically organized and driven by cancer stem cells characterized by CD44+CD24low/− or aldehyde dehydrogenase (ALDH) expression. These markers identify mesenchymal and epithelial populations both capable of tumor initiation. Less is known about these populations in non-cancerous mammary glands. From RNA sequencing, ALDH+ and ALDH−CD44+CD24− human mammary cells have epithelial-like and mesenchymal-like characteristics, respectively, with some co-expressing ALDH+ and CD44+CD24− by flow cytometry. At the single-cell level, these cells have the greatest mammosphere-forming capacity and express high levels of stemness and epithelial-to-mesenchymal transition-associated genes including ID1, SOX2, TWIST1, and ZEB2. We further identify single ALDH+ cells with a hybrid epithelial/mesenchymal phenotype that express genes associated with aggressive triple-negative breast cancers. These results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity. Isolation and RNA-seq of ALDH+ and CD44+CD24− breast cells Unlike in cancer, there is substantial overlap in ALDH+ and CD44+CD24− populations Single-cell analysis of ALDH+ cells identifies unexpected subpopulation structure Hybrid epithelial/mesenchymal ALDH+ cells have a cancer-like expression signature
Collapse
Affiliation(s)
- Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Ebrahim Azizi
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael D Brooks
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramdane Harouaka
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shamileh Fouladdel
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean P McDermott
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Lee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie Madden
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Population Sciences and Health Disparities Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Maureen A Sartor
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Cereser B, Jansen M, Austin E, Elia G, McFarlane T, van Deurzen CHM, Sieuwerts AM, Daidone MG, Tadrous PJ, Wright NA, Jones L, McDonald SAC. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells. J Pathol 2018; 244:61-70. [PMID: 28940516 PMCID: PMC5765426 DOI: 10.1002/path.4989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
It is widely accepted that the cell of origin of breast cancer is the adult mammary epithelial stem cell; however, demonstrating the presence and location of tissue stem cells in the human breast has proved difficult. Furthermore, we do not know the clonal architecture of the normal and premalignant mammary epithelium or its cellular hierarchy. Here, we use deficiency in the mitochondrial enzyme cytochrome c oxidase (CCO), typically caused by somatic mutations in the mitochondrial genome, as a means to perform lineage tracing in the human mammary epithelium. PCR sequencing of laser-capture microdissected cells in combination with immunohistochemistry for markers of lineage differentiation was performed to determine the clonal nature of the mammary epithelium. We have shown that in the normal human breast, clonal expansions (defined here by areas of CCO deficiency) are typically uncommon and of limited size, but can occur at any site within the adult mammary epithelium. The presence of a stem cell population was shown by demonstrating multi-lineage differentiation within CCO-deficient areas. Interestingly, we observed infrequent CCO deficiency that was restricted to luminal cells, suggesting that niche succession, and by inference stem cell location, is located within the luminal layer. CCO-deficient areas appeared large within areas of ductal carcinoma in situ, suggesting that the rate of clonal expansion was altered in the premalignant lesion. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Biancastella Cereser
- Clonal Dynamics in Epithelia Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Marnix Jansen
- Epithelial Stem Cell Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Emily Austin
- Centre for Histopathology Laboratory, Barts Cancer InstituteQueen Mary University of LondonUK
| | - George Elia
- Centre for Histopathology Laboratory, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Taneisha McFarlane
- Department of Surgery and Cancer, Imperial College LondonCharing Cross HospitalLondonUK
| | - Carolien HM van Deurzen
- Department of Pathology, Erasmus MC Cancer InstituteErasmus University Medical CenterRotterdamThe Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer InstituteErasmus University Medical Center, RotterdamThe Netherlands
| | - Maria G Daidone
- Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Paul J Tadrous
- Department of Cellular PathologyNorthwick Park HospitalLondonUK
| | - Nicholas A Wright
- Epithelial Stem Cell Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Louise Jones
- Breast Cancer Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Stuart AC McDonald
- Clonal Dynamics in Epithelia Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| |
Collapse
|
21
|
Hannezo E, Scheele CLGJ, Moad M, Drogo N, Heer R, Sampogna RV, van Rheenen J, Simons BD. A Unifying Theory of Branching Morphogenesis. Cell 2017; 171:242-255.e27. [PMID: 28938116 PMCID: PMC5610190 DOI: 10.1016/j.cell.2017.08.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022]
Abstract
The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events. Branching morphogenesis follows conserved statistical rules in multiple organs Ductal tips grow and branch as default state and stop dividing in high-density regions Model reproduces quantitatively organ properties in a parameter-free manner Shows that complex organ formation proceeds in a stochastic, self-organized manner
Collapse
Affiliation(s)
- Edouard Hannezo
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Colinda L G J Scheele
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht 3584CT, the Netherlands
| | - Mohammad Moad
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Nicholas Drogo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Rosemary V Sampogna
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht 3584CT, the Netherlands.
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
22
|
Sørensen KMJ, Meldgaard T, Melchjorsen CJ, Fridriksdottir AJ, Pedersen H, Petersen OW, Kristensen P. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections. BMC Cancer 2017; 17:19. [PMID: 28056857 PMCID: PMC5376696 DOI: 10.1186/s12885-016-2987-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/09/2016] [Indexed: 12/04/2022] Open
Abstract
Background One of the hallmarks of cancer is an altered energy metabolism, and here, mitochondria play a central role. Previous studies have indicated that some mitochondrial ribosomal proteins change their expression patterns upon transformation. Method In this study, we have used the selection of recombinant antibody libraries displayed on the surface of filamentous bacteriophage as a proteomics discovery tool for the identification of breast cancer biomarkers. A small subpopulation of breast cells expressing both cytokeratin 19 and cytokeratin 14 was targeted using a novel selection procedure. Results We identified the mitochondrial ribosomal protein s18a (Mrps18a) as a protein which is upregulated in breast cancer. However, Mrps18a was not homogeneously upregulated in all cancer cells, suggesting the existence of sub-populations within the tumor. The upregulation was not confined to cytokeratin 19 and cytokeratin 14 double positive cells. Conclusion This study illustrates how phage display can be applied towards the discovery of proteins which exhibit changes in their expression patterns. We identified the mitochondrial protein Mrps18a as being upregulated in human breast cancer cells compared to normal breast cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2987-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Theresa Meldgaard
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Aarhus, Denmark
| | | | - Agla J Fridriksdottir
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Pedersen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Aarhus, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Aarhus, Denmark.
| |
Collapse
|
23
|
Cocola C, Molgora S, Piscitelli E, Veronesi MC, Greco M, Bragato C, Moro M, Crosti M, Gray B, Milanesi L, Grieco V, Luvoni GC, Kehler J, Bellipanni G, Reinbold R, Zucchi I, Giordano A. FGF2 and EGF Are Required for Self-Renewal and Organoid Formation of Canine Normal and Tumor Breast Stem Cells. J Cell Biochem 2016; 118:570-584. [PMID: 27632571 DOI: 10.1002/jcb.25737] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cinzia Cocola
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Stefano Molgora
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Eleonora Piscitelli
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Maria Cristina Veronesi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Marianna Greco
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Cinzia Bragato
- Muscle Cell Biology Laboratory, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico "C. Besta", Via Temolo 4, 20126, Milano, Italy
| | - Monica Moro
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza 35, 20122, Milan, Italy
| | - Mariacristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza 35, 20122, Milan, Italy
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania
| | - Luciano Milanesi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Valeria Grieco
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Gaia Cecilia Luvoni
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milano, Italy
| | - James Kehler
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Rolland Reinbold
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Ileana Zucchi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via F.lli Cervi 93, 20090, Segrate, Milano, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Morsing M, Klitgaard MC, Jafari A, Villadsen R, Kassem M, Petersen OW, Rønnov-Jessen L. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma. Breast Cancer Res 2016; 18:108. [PMID: 27809866 PMCID: PMC5093959 DOI: 10.1186/s13058-016-0769-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. METHODS The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. RESULTS Lobular fibroblasts are CD105high/CD26low while interlobular fibroblasts are CD105low/CD26high. Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. CONCLUSIONS Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.
Collapse
Affiliation(s)
- Mikkel Morsing
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Marie Christine Klitgaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
25
|
Brooks MD, Burness ML, Wicha MS. Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell 2016; 17:260-71. [PMID: 26340526 DOI: 10.1016/j.stem.2015.08.014] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cellular heterogeneity represents one of the greatest challenges in cancer therapeutics. In many malignancies, this heterogeneity is generated during tumor evolution through a combination of genetic alterations and epigenetic events that recapitulate normal developmental processes including stem cell self-renewal and differentiation. Many, if not most, tumors display similar hierarchal organization, at the apex of which are "stem-like cells" that drive tumor growth, mediate metastasis, and contribute to treatment resistance. Using breast cancer as a model, we discuss how an improved understanding of tumor cellular heterogeneity and plasticity may lead to development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Michael D Brooks
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monika L Burness
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 2016; 18:19. [PMID: 26926363 PMCID: PMC4772689 DOI: 10.1186/s13058-016-0677-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Methods Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. Results When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell markers, which subsequently localized to the leading edges of the tissue outgrowths. Ductal elongation was preceded by leader cells that protruded from the tips of ducts and engaged with the extracellular matrix. Conclusions These 3D hydrogel scaffolds support the growth of complex mammary tissues from primary patient-derived cells. We anticipate that this culture system will empower future studies of human mammary gland development and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0677-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ethan S Sokol
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Daniel H Miller
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anne Breggia
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA.
| | - Kevin C Spencer
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53711, USA.
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
27
|
Ruiz de Garibay G, Herranz C, Llorente A, Boni J, Serra-Musach J, Mateo F, Aguilar H, Gómez-Baldó L, Petit A, Vidal A, Climent F, Hernández-Losa J, Cordero Á, González-Suárez E, Sánchez-Mut JV, Esteller M, Llatjós R, Varela M, López JI, García N, Extremera AI, Gumà A, Ortega R, Plà MJ, Fernández A, Pernas S, Falo C, Morilla I, Campos M, Gil M, Román A, Molina-Molina M, Ussetti P, Laporta R, Valenzuela C, Ancochea J, Xaubet A, Casanova Á, Pujana MA. Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness. PLoS One 2015; 10:e0132546. [PMID: 26167915 PMCID: PMC4500593 DOI: 10.1371/journal.pone.0132546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Carmen Herranz
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Alicia Llorente
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Jacopo Boni
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Jordi Serra-Musach
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Helena Aguilar
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Laia Gómez-Baldó
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Fina Climent
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | | | - Álex Cordero
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - José Vicente Sánchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Roger Llatjós
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Mar Varela
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - José Ignacio López
- Cruces University Hospital, BioCruces Research Institute, University of the Basque Country, Barakaldo, Spain
| | - Nadia García
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Ana I. Extremera
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Anna Gumà
- Department of Radiology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Raúl Ortega
- Department of Radiology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - María Jesús Plà
- Department of Gynecology, University Hospital of Bellvitge, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Adela Fernández
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Sònia Pernas
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Catalina Falo
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Idoia Morilla
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Miriam Campos
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Miguel Gil
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Antonio Román
- Department of Pulmonology, Lung Transplant Unit, Lymphangioleiomyomatosis (LAM) Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - María Molina-Molina
- Department of Pneumology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Madrid, Spain
| | - Piedad Ussetti
- Department of Pneumology, University Hospital Clínica Puerta del Hierro, Madrid, Spain
| | - Rosalía Laporta
- Department of Pneumology, University Hospital Clínica Puerta del Hierro, Madrid, Spain
| | - Claudia Valenzuela
- Department of Pneumology, Instituto de Investigación Sanitaria La Princesa, Hospital La Princesa, Madrid, Spain
| | - Julio Ancochea
- Department of Pneumology, Instituto de Investigación Sanitaria La Princesa, Hospital La Princesa, Madrid, Spain
| | - Antoni Xaubet
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona, Agusti Pi Suñer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
| | | | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- * E-mail:
| |
Collapse
|
28
|
Dontu G, Ince TA. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation. J Mammary Gland Biol Neoplasia 2015; 20:51-62. [PMID: 26286174 PMCID: PMC4595531 DOI: 10.1007/s10911-015-9341-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.
Collapse
Affiliation(s)
- Gabriela Dontu
- Stem Cell Group, Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London School of Medicine, 3rd Floor Bermondsey Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Braman Family Breast Cancer Institute, Interdisciplinary Stem Cell Institute and Department of Pathology, University of Miami Miller School of Medicine, 1501 NW 10th Ave., Miami, 33136, FL, USA.
| |
Collapse
|