1
|
Izrael M, Chebath J, Molakandov K, Revel M. Clinical perspective on pluripotent stem cells derived cell therapies for the treatment of neurodegenerative diseases. Adv Drug Deliv Rev 2025; 218:115525. [PMID: 39880333 DOI: 10.1016/j.addr.2025.115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems. Over the past two decades, comprehensive preclinical efficacy (proof-of-concept) and safety studies have led to the initiation of First-in-Human phase I-II clinical trials for a range of neurodegenerative diseases. In this review, we explore the fundamentals and challenges of neural-cell therapies derived from pluripotent stem cells for treating neurodegenerative diseases. Additionally, we highlight key preclinical investigations that paved the way for regulatory approvals of these trials. Furthermore, we provide an overview on progress and status of clinical trials done so far in treating neurodegenerative diseases such as spinal cord injury (SCI), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), as well as advances in retina diseases such as Stargardt disease (a.k.a fundus flavimaculatus), retinitis pigmentosa (RP) and age-related macular degeneration (AMD). These trials will pave the way for the development of new cell-based therapies targeting additional neurological conditions, including Alzheimer's disease and epilepsy.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel.
| | - Judith Chebath
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Kfir Molakandov
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
2
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
3
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:105-118. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
4
|
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M. Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 2024:1-14. [PMID: 39544140 DOI: 10.1080/13816810.2024.2423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based therapy has gained importance over the past decades due to huge advances in science and technology behind the generation and directed differentiation of pluripotent cells from embryos and adult cells. Preclinical proof-of-concept studies have been followed by clinical trials showing efficacy and safety of transplantation of stem cell-based therapy, which are beginning to establish this as a modality of treatment. Disease candidates of interest are primarily conditions that may benefit from replacing dead or dying cells, including advanced inherited retinal dystrophies and age-related macular degeneration, and predominantly seek to transplant either RPE or photoreceptors, although neurotrophic approaches have also been trialed. Whilst a consensus has yet to be reached about the best stage/type of cells for transplantation (stem cells, progenitor cells, differentiated RPE and photoreceptors) and the methods of implantation (sheet, suspension), several CTs have shown safety. There remain potential concerns regarding tumorigenicity and immune rejection; however, with ongoing improvements in cell generation, selection, and delivery, these can be minimized. Earlier studies showed efficacy with immunosuppressive drugs to prevent rejection, and recent donor-matched transplants have avoided the need for immunosuppression. Retinal regenerative medicine is a challenging field and is in a nascent stage but holds tremendous promise. This narrative review delves into the current understanding of stem cells and the latest clinical trials of retinal cell transplantation.
Collapse
Affiliation(s)
- Sagnik Sen
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Michel Michaelides
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
5
|
Wang S, Li W, Chen M, Cao Y, Lu W, Li X. The retinal pigment epithelium: Functions and roles in ocular diseases. FUNDAMENTAL RESEARCH 2024; 4:1710-1718. [PMID: 39734536 PMCID: PMC11670733 DOI: 10.1016/j.fmre.2023.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 12/31/2024] Open
Abstract
The retinal pigment epithelium (RPE) between retinal photoreceptors and choroidal capillaries is a single layer of cells that are of critical importance to the eye. RPE cells are derived from the anterior neural plate of neuroectodermal origin. Instructed by specific molecules and signaling pathways, the RPE undergoes formation and maturation to form a functional unit together with photoreceptors. The RPE plays crucial roles in maintaining normal retinal structure and functions, such as phagocytosis; barrier function; transportation of nutrients, ions, and water; resistance to oxidative damage; maintenance of visual cycle; and production of various important factors. RPE cells have an efficient metabolic machinery to provide sufficient energy to the retina. RPE dysfunction or atrophy can lead to many retinopathies, such as age-related macular degeneration and proliferative vitreoretinopathy. Here, we discuss RPE development, functions, and roles in various ocular diseases, and the mechanisms involved. A better understanding of the functions of the RPE and related regulatory pathways may help identify novel or better therapies for the treatment of many blinding diseases.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wanhong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Min Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
6
|
Wu KY, Dhaliwal JK, Sasitharan A, Kalevar A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024; 16:1299. [PMID: 39458628 PMCID: PMC11510658 DOI: 10.3390/pharmaceutics16101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. Methods: A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. Results: Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. Conclusions: While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Jaskarn K. Dhaliwal
- Faculty of Health Sciences, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Akash Sasitharan
- Faculty of Medicine and Health Sciences, Department of Medicine, McGill University, Montreal, QC H3A 0GA, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
7
|
Ishida M, Masuda T, Sakai N, Nakai-Futatsugi Y, Kamao H, Shiina T, Takahashi M, Sugita S. Graft survival of major histocompatibility complex deficient stem cell-derived retinal cells. COMMUNICATIONS MEDICINE 2024; 4:187. [PMID: 39349587 PMCID: PMC11442691 DOI: 10.1038/s43856-024-00617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Gene editing of immunomodulating molecules is a potential transplantation strategy to control immune rejection. As we noticed the successful transplantation of retinal pigment epithelium (RPE) derived from embryonic stem cells of a cynomolgus monkey that accidentally lacked MHC class II (MHC-II) molecules, we hypothesized immune rejection could be evaded by suppressing MHC-II. METHODS Gene editing by the Crispr/Cas9 system was performed in induced pluripotent stem cells derived from a cynomolgus monkey (miPSCs) for targeted deletion of the gene coding class II MHC trans-activator (CIITA). Then the CIITA-knocked out miPSCs were differentiated into RPE cells to generate miPSC-derived MHC-II knockout RPE. The MHC-II knockout or wild-type RPEs were transplanted into the eyes of healthy cynomolgus monkeys. All monkeys used in this study were male. RESULTS Here we show when MHC-II knockout RPE are transplanted into monkey eyes, they show suppressed immunogenicity with no infiltration of inflammatory cells, leading to successful engraftment. CONCLUSIONS Our results reasonably evidence the efficacy of MHC-II knockout iPSC-RPE transplants for clinical application.
Collapse
Affiliation(s)
- Masaaki Ishida
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- Department of Ophthalmology, Toyama University, Toyama, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- VC Cell Therapy Inc, Kobe, Japan
- Ritsumeikan University, Research Organization of Science and Technology, Kusatsu, Japan
| | - Noriko Sakai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- VC Cell Therapy Inc, Kobe, Japan
| | - Yoko Nakai-Futatsugi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan.
- VC Cell Therapy Inc, Kobe, Japan.
- Ritsumeikan University, Research Organization of Science and Technology, Kusatsu, Japan.
| | - Hiroyuki Kamao
- Department of Ophthalmology, Kawasaki Medical School, Okayama, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University, School of Medicine, Kanagawa, Isehara, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- Ritsumeikan University, Research Organization of Science and Technology, Kusatsu, Japan
- Kobe City Eye Hospital, Department of Ophthalmology, Kobe, Japan
- Vision Care Inc, Kobe, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan.
- Kobe City Eye Hospital, Department of Ophthalmology, Kobe, Japan.
- Vision Care Inc, Kobe, Japan.
| |
Collapse
|
8
|
Cabrera-Aguas M, Downie LE, Munsie MM, Di Girolamo N, O'Connor M, Watson SL. Knowledge, views and experiences of Australian optometrists in relation to ocular stem cell therapies. Clin Exp Optom 2024; 107:754-762. [PMID: 35918176 DOI: 10.1080/08164622.2022.2102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
CLINICAL RELEVANCE Findings from this study examining Australian optometrists' insights into ocular stem cell (SC) therapies have capacity to inform continuing professional development (CPD) about these interventions. BACKGROUND This study investigated Australian optometrists' knowledge, views, experiences, and preferred education sources regarding ocular SC therapies. METHODS An online survey was distributed to optometrists via Optometry Australia, Mivision magazine, professional groups, and social media from August 2020 to March 2021. Data were collected on demographics, and SC knowledge, awareness and experience. RESULTS Of 81 optometrists who completed the survey, many were metropolitan-based (85%), worked in independent practice (47%), female (56%) and >46 years of age (45%). Approximately one-fifth indicated awareness of ocular SC therapies used in standard practice; one-third had knowledge of SC clinical trials. The most noted SC therapies were for corneal disease in the United States [US] (72%) and Australia (44%). Respondents identified the availability of SC therapies for dry eye disease in Australia and the US (39% and 44% respectively), despite no regulatory-approved treatments for this indication. Clinical trials investigating inherited retinal and corneal diseases in Australia were the most commonly identified (44% and 36%, respectively). Half the respondents felt 'unsure' about the quality of evidence for treating eye conditions using SCs. One-fifth indicated concerns with these therapies; of these, most mentioned efficacy (82%), safety (76%) and/or cost (71%). About one-fifth reported being asked for advice about SCs by patients. Two-thirds felt neutral, uncomfortable, or very uncomfortable providing this advice, due to lack of knowledge or the topic being beyond their expertise. Over half (57%) were unsure if clinical management should change if patients received SC therapies. Respondents were receptive to face-to-face education. CONCLUSION Some optometrists responding to this survey were aware of ocular SC therapies and/or clinical trials. CPD programs may assist with maintaining currency in this evolving field.
Collapse
Affiliation(s)
- Maria Cabrera-Aguas
- Save Sight Institute, Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Corneal Unit, Sydney Eye Hospital, Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Megan M Munsie
- School of Biomedical Sciences and Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, Faculty of Medicine and Health, University for New South Wales, Sydney, NSW, Australia
| | - Michael O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Stephanie L Watson
- Save Sight Institute, Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Corneal Unit, Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
9
|
Ghenciu LA, Hațegan OA, Stoicescu ER, Iacob R, Șișu AM. Emerging Therapeutic Approaches and Genetic Insights in Stargardt Disease: A Comprehensive Review. Int J Mol Sci 2024; 25:8859. [PMID: 39201545 PMCID: PMC11354485 DOI: 10.3390/ijms25168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Stargardt disease, one of the most common forms of inherited retinal diseases, affects individuals worldwide. The primary cause is mutations in the ABCA4 gene, leading to the accumulation of toxic byproducts in the retinal pigment epithelium (RPE) and subsequent photoreceptor cell degeneration. Over the past few years, research on Stargardt disease has advanced significantly, focusing on clinical and molecular genetics. Recent studies have explored various innovative therapeutic approaches, including gene therapy, stem cell therapy, and pharmacological interventions. Gene therapy has shown promise, particularly with adeno-associated viral (AAV) vectors capable of delivering the ABCA4 gene to retinal cells. However, challenges remain due to the gene's large size. Stem cell therapy aims to replace degenerated RPE and photoreceptor cells, with several clinical trials demonstrating safety and preliminary efficacy. Pharmacological approaches focus on reducing toxic byproduct accumulation and modulating the visual cycle. Precision medicine, targeting specific genetic mutations and pathways, is becoming increasingly important. Novel techniques such as clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 offer potential for directly correcting genetic defects. This review aims to synthesize recent advancements in understanding and treating Stargardt disease. By highlighting breakthroughs in genetic therapies, stem cell treatments, and novel pharmacological strategies, it provides a comprehensive overview of emerging therapeutic options.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, Vasile Goldis Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania
| | - Emil Robert Stoicescu
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timișoara, Mihai Viteazul Boulevard No. 1, 300222 Timișoara, Romania; (E.R.S.); (R.I.)
- Department of Radiology and Medical Imaging, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Roxana Iacob
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timișoara, Mihai Viteazul Boulevard No. 1, 300222 Timișoara, Romania; (E.R.S.); (R.I.)
- Department of Anatomy and Embriology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, 300041 Timișoara, Romania;
| | - Alina Maria Șișu
- Department of Anatomy and Embriology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, 300041 Timișoara, Romania;
| |
Collapse
|
10
|
Liu H, Lu S, Chen M, Gao N, Yang Y, Hu H, Ren Q, Liu X, Chen H, Zhu Q, Li S, Su J. Towards Stem/Progenitor Cell-Based Therapies for Retinal Degeneration. Stem Cell Rev Rep 2024; 20:1459-1479. [PMID: 38809490 DOI: 10.1007/s12015-024-10740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Retinal degeneration (RD) is a leading cause of blindness worldwide and includes conditions such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt's disease (STGD). These diseases result in the permanent loss of vision due to the progressive and irreversible degeneration of retinal cells, including photoreceptors (PR) and the retinal pigment epithelium (RPE). The adult human retina has limited abilities to regenerate and repair itself, making it challenging to achieve complete self-replenishment and functional repair of retinal cells. Currently, there is no effective clinical treatment for RD. Stem cell therapy, which involves transplanting exogenous stem cells such as retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), or activating endogenous stem cells like Müller Glia (MG) cells, holds great promise for regenerating and repairing retinal cells in the treatment of RD. Several preclinical and clinical studies have shown the potential of stem cell-based therapies for RD. However, the clinical translation of these therapies for the reconstruction of substantial vision still faces significant challenges. This review provides a comprehensive overview of stem/progenitor cell-based therapy strategies for RD, summarizes recent advances in preclinical studies and clinical trials, and highlights the major challenges in using stem/progenitor cell-based therapies for RD.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuaiyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongxu Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| |
Collapse
|
11
|
Yang J, Lewis GP, Hsiang CH, Menges S, Luna G, Cho W, Turovets N, Fisher SK, Klassen H. Amelioration of Photoreceptor Degeneration by Intravitreal Transplantation of Retinal Progenitor Cells in Rats. Int J Mol Sci 2024; 25:8060. [PMID: 39125629 PMCID: PMC11312009 DOI: 10.3390/ijms25158060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Photoreceptor degeneration is a major cause of untreatable blindness worldwide and has recently been targeted by emerging technologies, including cell- and gene-based therapies. Cell types of neural lineage have shown promise for replacing either photoreceptors or retinal pigment epithelial cells following delivery to the subretinal space, while cells of bone marrow lineage have been tested for retinal trophic effects following delivery to the vitreous cavity. Here we explore an alternate approach in which cells from the immature neural retinal are delivered to the vitreous cavity with the goal of providing trophic support for degenerating photoreceptors. Rat and human retinal progenitor cells were transplanted to the vitreous of rats with a well-studied photoreceptor dystrophy, resulting in substantial anatomical preservation and functional rescue of vision. This work provides scientific proof-of-principle for a novel therapeutic approach to photoreceptor degeneration that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Jing Yang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Geoffrey P. Lewis
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Chin-Hui Hsiang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven Menges
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - William Cho
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Nikolay Turovets
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS, Kim GJ. Achyranthis radix Extract Enhances Antioxidant Effect of Placenta-Derived Mesenchymal Stem Cell on Injured Human Ocular Cells. Cells 2024; 13:1229. [PMID: 39056810 PMCID: PMC11274440 DOI: 10.3390/cells13141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.
Collapse
Affiliation(s)
- Dae-Hyun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Ji Woong Han
- Advanced PLAB, PLABiologics Co., Ltd., Seongnam 13522, Republic of Korea;
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Se Jin Hong
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Ik Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| |
Collapse
|
13
|
Gowrishankar S, Smith ME, Creber N, Muzaffar J, Borsetto D. Immunosuppression in stem cell clinical trials of neural and retinal cell types: A systematic review. PLoS One 2024; 19:e0304073. [PMID: 38968328 PMCID: PMC11226136 DOI: 10.1371/journal.pone.0304073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/03/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Pharmacologic immunosuppression regimes are commonly employed in stem cell clinical trials to mitigate host immune rejection and promote survival and viability of transplanted cells. Immunosuppression and cell survival has been extensively studied in retinal and spinal tissues. The applicability of stem cell therapy is rapidly expanding to other sensory organs such as the ear and hearing. As regenerative therapy is directed to new areas, a greater understanding of immunosuppression strategies and their efficacy is required to facilitate translation to organ-specific biologic microenvironments. OBJECTIVE This systematic review appraises the current literature regarding immunosuppression strategies employed in stem cell trials of retinal and neural cells. METHODS This systematic review was performed in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria included studies presenting data on neural or retinal cells as part of an in-human clinical trial that detailed the immunosuppression regime used. Exclusion criteria included non-English language studies, animal studies, review articles, case reports, editorials, and letters. The databases Medline, Embase, Scopus, Web of Science, and the Cochrane Library were searched from inception to February 2024. Risk of bias was evaluated using the ROBINS-I tool. RESULTS Eighteen articles fit the inclusion criteria. Nine articles concerned retinal cells, 5 concerned spinal cord injury, and 4 concerned amyotrophic lateral sclerosis. A multi-drug and short-term immunosuppression regime were commonly employed in the identified studies. Detected immune responses in treated patients were rare. Common immunosuppression paradigms included tacrolimus, mycophenolate mofetil and tapering doses of steroids. Local immunosuppression with steroids was employed in some studies concerning retinal diseases. DISCUSSION A short-term course of systemic immunosuppression seemed efficacious for most included studies, with some showing grafted cells viable months to years after immunosuppression had stopped. Longer-term follow-up is required to see if this remains the case. Side effects related to immunosuppression were uncommon.
Collapse
Affiliation(s)
- Shravan Gowrishankar
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
| | - Matthew E. Smith
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Nathan Creber
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Jameel Muzaffar
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
| | - Daniele Borsetto
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
| |
Collapse
|
14
|
Takayanagi H, Hayashi R. Status and prospects for the development of regenerative therapies for corneal and ocular diseases. Regen Ther 2024; 26:819-825. [PMID: 39329098 PMCID: PMC11424903 DOI: 10.1016/j.reth.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Among the regenerative therapies being put into clinical use, the field of corneal regenerative therapy is one of the most advanced, with several regulatory approved products. This article describes the progress from initial development through to clinical application in the eye field, with a particular focus on therapies for corneal epithelial and endothelial diseases that have already been regulatory approved as regenerative therapy products. The applications of regenerative therapy to the corneal epithelium were attempted and confirmed earlier than other parts of the cornea, following advancements in basic research on corneal epithelial stem cells. Based on these advances, four regenerative therapy products for corneal epithelial disease, each employing distinct cell sources and culture techniques, have been commercialized since the regulatory approval of Holoclar® in Italy as a regenerative therapy product for corneal epithelial disease in 2015. Corneal endothelial regenerative therapy was started by the development of an in vitro method to expand corneal endothelial cells which do not proliferate in adults. The product was approved in Japan as Vyznova® in 2023. The development of regenerative therapies for retinal and ocular surface diseases is actively being pursued, and these therapies use somatic stem cells and pluripotent stem cells (PSCs), especially induced pluripotent stem cells (iPSCs). Accordingly, the eye field is anticipated to play a pioneering role in regenerative therapy development going forward.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Research, Development and Production Department of RAYMEI Incorporated, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
16
|
Kajita K, Nishida M, Kurimoto Y, Yokota S, Sugita S, Semba T, Shirae S, Hayashi N, Ozaki A, Miura Y, Maeda A, Mitamura Y, Takahashi M, Mandai M. Graft cell expansion from hiPSC-RPE strip after transplantation in primate eyes with or without RPE damage. Sci Rep 2024; 14:10044. [PMID: 38698112 PMCID: PMC11065889 DOI: 10.1038/s41598-024-60895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Clinical studies using suspensions or sheets of human pluripotent cell-derived retinal pigment epithelial cells (hiPSC-RPE) have been conducted globally for diseases such as age-related macular degeneration. Despite being minimally invasive, cell suspension transplantation faces challenges in targeted cell delivery and frequent cell leakage. Conversely, although the RPE sheet ensures targeted delivery with correct cell polarity, it requires invasive surgery, and graft preparation is time-consuming. We previously reported hiPSC-RPE strips as a form of quick cell aggregate that allows for reliable cell delivery to the target area with minimal invasiveness. In this study, we used a microsecond pulse laser to create a local RPE ablation model in cynomolgus monkey eyes. The hiPSC-RPE strips were transplanted into the RPE-ablated and intact sites. The hiPSC-RPE strip stably survived in all transplanted monkey eyes. The expansion area of the RPE from the engrafted strip was larger at the RPE injury site than at the intact site with no tumorigenic growth. Histological observation showed a monolayer expansion of the transplanted RPE cells with the expression of MERTK apically and collagen type 4 basally. The hiPSC-RPE strip is considered a beneficial transplantation option for RPE cell therapy.
Collapse
Affiliation(s)
- Keisuke Kajita
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Vision Care Inc. Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Mitsuhiro Nishida
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuo Kurimoto
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Satoshi Yokota
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Sunao Sugita
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Vision Care Inc. Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Toshika Semba
- Vision Care Inc. Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoshi Shirae
- Vision Care Inc. Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoko Hayashi
- Vision Care Inc. Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Atsuta Ozaki
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Yoko Miura
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Akiko Maeda
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima, Japan
| | - Masayo Takahashi
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Vision Care Inc. Kobe Eye Center 5F, 2-1-8 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Michiko Mandai
- Kobe City Eye Hospital, 2-1-8, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
17
|
Yalla GR, Kuriyan AE. Cell therapy for retinal disease. Curr Opin Ophthalmol 2024; 35:178-184. [PMID: 38276971 DOI: 10.1097/icu.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW This review presents an update on completed stem cell therapy trials aimed at retinal diseases. RECENT FINDINGS In recent years, several clinical trials have been conducted examining the safety and role of cell therapy in diseases, including age-related macular degeneration, Stargardt's macular dystrophy, and retinitis pigmentosa. Studies have utilized a variety of cell lines, modes of delivery, and immunosuppressive regimens. The prevalence of fraudulent cell therapy clinics poses threats to patients. SUMMARY Clinical trials have begun to characterize the safety of cell therapy in retinal disease. While studies have described the potential benefits of cell therapy, larger studies powered to evaluate this efficacy are required to continue progressing toward preventing retinal disease. Nonapproved cell therapy clinics require regulation and patient education to avoid patient complications.
Collapse
Affiliation(s)
- Goutham R Yalla
- Wills Eye Hospital, Mid Atlantic Retina
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
18
|
Park SJ, Kim YY, Han JY, Kim SW, Kim H, Ku SY. Advancements in Human Embryonic Stem Cell Research: Clinical Applications and Ethical Issues. Tissue Eng Regen Med 2024; 21:379-394. [PMID: 38502279 PMCID: PMC10987435 DOI: 10.1007/s13770-024-00627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The development and use of human embryonic stem cells (hESCs) in regenerative medicine have been revolutionary, offering significant advancements in treating various diseases. These pluripotent cells, derived from early human embryos, are central to modern biomedical research. However, their application is mired in ethical and regulatory complexities related to the use of human embryos. METHOD This review utilized key databases such as ClinicalTrials.gov, EU Clinical Trials Register, PubMed, and Google Scholar to gather recent clinical trials and studies involving hESCs. The focus was on their clinical application in regenerative medicine, emphasizing clinical trials and research directly involving hESCs. RESULTS Preclinical studies and clinical trials in various areas like ophthalmology, neurology, endocrinology, and reproductive medicine have demonstrated the versatility of hESCs in regenerative medicine. These studies underscore the potential of hESCs in treating a wide array of conditions. However, the field faces ethical and regulatory challenges, with significant variations in policies and perspectives across different countries. CONCLUSION The potential of hESCs in regenerative medicine is immense, offering new avenues for treating previously incurable diseases. However, navigating the ethical, legal, and regulatory landscapes is crucial for the continued advancement and responsible application of hESC research in the medical field. Considering both scientific potential and ethical implications, a balanced approach is essential for successfully integrating hESCs into clinical practice.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea.
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Zhang J, Suo M, Wang J, Liu X, Huang H, Wang K, Liu X, Sun T, Li Z, Liu J. Standardisation is the key to the sustained, rapid and healthy development of stem cell-based therapy. Clin Transl Med 2024; 14:e1646. [PMID: 38572666 PMCID: PMC10993161 DOI: 10.1002/ctm2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Stem cell-based therapy (SCT) is an important component of regenerative therapy that brings hope to many patients. After decades of development, SCT has made significant progress in the research of various diseases, and the market size has also expanded significantly. The transition of SCT from small-scale, customized experiments to routine clinical practice requires the assistance of standards. Many countries and international organizations around the world have developed corresponding SCT standards, which have effectively promoted the further development of the SCT industry. METHODS We conducted a comprehensive literature review to introduce the clinical application progress of SCT and focus on the development status of SCT standardization. RESULTS We first briefly introduced the types and characteristics of stem cells, and summarized the current clinical application and market development of SCT. Subsequently, we focused on the development status of SCT-related standards as of now from three levels: the International Organization for Standardization (ISO), important international organizations, and national organizations. Finally, we provided perspectives and conclusions on the significance and challenges of SCT standardization. CONCLUSIONS Standardization plays an important role in the sustained, rapid and healthy development of SCT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Moran Suo
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Jinzuo Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xin Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Huagui Huang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Kaizhong Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xiangyan Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Tianze Sun
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Zhonghai Li
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| | - Jing Liu
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| |
Collapse
|
20
|
Khaboushan AS, Ebadpour N, Moghadam MMJ, Rezaee Z, Kajbafzadeh AM, Zolbin MM. Cell therapy for retinal degenerative disorders: a systematic review and three-level meta-analysis. J Transl Med 2024; 22:227. [PMID: 38431596 PMCID: PMC10908175 DOI: 10.1186/s12967-024-05016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Retinal degenerative disorders (RDDs) cause vision loss by damaging retinal neurons and photoreceptors, affecting individuals of all ages. Cell-based therapy has emerged as an effective approach for the treatment of RDDs with promising results. This meta-analysis aims to comprehensively evaluate the efficacy of cell therapy in treating age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt macular degeneration (SMD) as the most prevalent RDDs. METHODS PubMed, Scopus, Web of Science, and Embase were searched using keywords related to various retinal diseases and cell therapy treatments until November 25th, 2023. The studies' quality was evaluated using the Joanna Briggs Institute's (JBI) checklist for quasi-experimental studies. Visual acuity measured as LogMAR score was used as our main outcome. A three-level random-effect meta-analysis was used to explore the visual acuity in patients who received cell-based therapy. Heterogeneity among the included studies was evaluated using subgroup and sensitivity analyses. Moreover, meta-regression for the type of cells, year of publication, and mean age of participants were performed. RESULTS Overall, 8345 studies were retrieved by the search, and 39 met the eligibility criteria, out of which 18 studies with a total of 224 eyes were included in the meta-analysis. There were 12 studies conducted on AMD, 7 on SMD, and 2 on RP. Cell therapy for AMD showed significant improvement in LogMAR (p < 0.05). Also, cell therapy decreased the LogMAR score in SMD and RP (p < 0.01 and p < 0.0001, respectively). Across all conditions, no substantial publication bias was detected (p < 0.05). CONCLUSION The findings of the study highlight that the application of cell therapy can enhance the visual acuity in AMD, SMD, and RP.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ebadpour
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Johari Moghadam
- Department of Ophthalmology & Vision Science, Tschannen Eye Institute, University of California, Davis, Sacramento, CA, USA
| | - Zahra Rezaee
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
21
|
Bose D, Ortolan D, Farnoodian M, Sharma R, Bharti K. Considerations for Developing an Autologous Induced Pluripotent Stem Cell (iPSC)-Derived Retinal Pigment Epithelium (RPE) Replacement Therapy. Cold Spring Harb Perspect Med 2024; 14:a041295. [PMID: 37487631 PMCID: PMC10910357 DOI: 10.1101/cshperspect.a041295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cell-replacement therapies are a new class of treatments, which include induced pluripotent stem cell (iPSC)-derived tissues that aim to replace degenerated cells. iPSCs can potentially be used to generate any cell type of the body, making them a powerful tool for treating degenerative diseases. Cell replacement for retinal degenerative diseases is at the forefront of cell therapies, given the accessibility of the eye for surgical procedures and a huge unmet medical need for retinal degenerative diseases with no current treatment options. Clinical trials are ongoing in different parts of the world using stem cell-derived retinal pigment epithelium (RPE). This review focuses on scientific and regulatory considerations when developing an iPSC-derived RPE cell therapy from the development of a robust and efficient differentiation protocol to critical quality control assays for cell validation, the choice of an appropriate animal model for preclinical testing, and the regulatory aspects that dictate the final approval for proceeding to a first-in-human clinical trial.
Collapse
Affiliation(s)
- Devika Bose
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Davide Ortolan
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mitra Farnoodian
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Yang J, Tian M, Li J, Chen Y, Lin S, Ma X, Chen W, Hou L. Induction of human ESC-derived and adult primary multipotent limbal stem cells into retinal pigment epithelial cells and corneal stromal stem cells. Exp Eye Res 2024; 239:109778. [PMID: 38171475 DOI: 10.1016/j.exer.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) therapies are promising alternatives for the treatment of retinal degenerative diseases caused by RPE degeneration. The generation of autologous RPE cells from human adult donors, which has the advantage of avoiding immune rejection and teratoma formation, is an alternative cell resource to gain mechanistic insight into and test potential therapies for RPE degenerative diseases. Here, we found that limbal stem cells (LSCs) from hESCs and adult primary human limbus have the potential to produce RPE cells and corneal stromal stem cells (CSSCs). We showed that hESC-LSC-derived RPE cells (LSC-RPE) expressed RPE markers, had a phagocytic function, and synthesized tropical factors. Furthermore, during differentiation from LSCs to RPE cells, cells became pigmented, accompanied by a decrease in the level of LSC marker KRT15 and an increase in the level of RPE marker MITF. The Wnt signaling pathway plays a role in LSC-RPE fate transition, promotes MITF expression in the nucleus, and encourages RPE fate transition. In addition, we also showed that primary LSCs (pLSCs) from adult human limbus similar to hESC-LSC could generate RPE cells, which was supported by the co-expression of LSC and RPE cell markers (KRT15/OTX2, KRT15/MITF), suggesting the transition from pLSC to RPE cells, and typical polygonal morphology, melanization, RPE cell marker genes expression (TYR, RPE65), tight junction formation by ZO-1 expression, and the most crucial phagocytotic function. On the other hand, both hESC-LSCs and pLSCs also differentiated into CSSCs (LSC-CSSCs) that expressed stem cell markers (PAX6, NESTIN), presented MSC features, including surface marker expression and trilineage differentiation capability, like those in human CSSCs. Furthermore, the capability of pLSC-CSSC to differentiate into cells expressing keratocyte marker genes (ALDH3A1, PTGDS, PDK4) indicated the potential to induce keratocytes. These results suggest that the adult pLSC is an alternative cell resource, and its application provides a novel potential therapeutic avenue for preventing RPE dysfunction-related retinal degenerative diseases and corneal scarring.
Collapse
Affiliation(s)
- Juan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Meiyu Tian
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shichao Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
23
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
24
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
25
|
Zhang K, Cai W, Hu L, Chen S. Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming. Curr Stem Cell Res Ther 2024; 19:1251-1262. [PMID: 37807418 DOI: 10.2174/011574888x255496230923164547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Wenwen Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| |
Collapse
|
26
|
Martins de Oliveira ML, Tura BR, Meira Leite M, Melo Dos Santos EJ, Pôrto LC, Pereira LV, Campos de Carvalho AC. Creating an HLA-homozygous iPS cell bank for the Brazilian population: Challenges and opportunities. Stem Cell Reports 2023; 18:1905-1912. [PMID: 37774702 PMCID: PMC10656352 DOI: 10.1016/j.stemcr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023] Open
Abstract
Identifying human leukocyte antigen (HLA) haplotype-homozygous donors for the generation of induced pluripotent stem (iPS) cell lines permits the construction of biobanks immunologically compatible with significant numbers of individuals for use in therapy. However, two questions must be addressed to create such a bank: how many cell lines are necessary to match most of the recipient population and how many people should be tested to find these donors? In Japan and the UK, 50 and 100 distinct HLA-A, -B, and -DRB1 triple-homozygous haplotypes would cover 90% of those populations, respectively. Using data from the Brazilian National Registry of Bone Marrow Donors (REDOME), encompassing 4,017,239 individuals, we identified 1,906 distinct triple-homozygous HLA haplotypes. In Brazil, 559 triple-homozygous cell lines cover 95% of the population, and 3.8 million people would have to be screened. Finally, we show the contribution of the 30 most frequent triple-homozygous HLA haplotypes in Brazil to populations of different countries.
Collapse
Affiliation(s)
| | - Bernardo Rangel Tura
- Department of Biostatistics and Bioinformatics of National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil
| | - Mauro Meira Leite
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil
| | | | - Luís Cristóvão Pôrto
- Histocompatibility and Cryopreservation Laboratory - Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences of University of São Paulo (USP), São Paulo, Brazil
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ) - Cellular and Molecular Cardiology Laboratory, Rio de Janeiro, Brazil; National Institute for Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Shome I, Thathapudi NC, Aramati BMR, Kowtharapu BS, Jangamreddy JR. Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. Int Ophthalmol 2023; 43:3891-3909. [PMID: 37347455 DOI: 10.1007/s10792-023-02767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disorder prevalent in the elderly population, which leads to the loss of central vision. The disease progression can be managed, if not prevented, either by blocking neovascularization ("wet" form of AMD) or by preserving retinal pigment epithelium and photoreceptor cells ("dry" form of AMD). Although current therapeutic modalities are moderately successful in delaying the progression and management of the disease, advances over the past years in regenerative medicine using iPSC, embryonic stem cells, advanced materials (including nanomaterials) and organ bio-printing show great prospects in restoring vision and efficient management of either forms of AMD. This review focuses on the molecular mechanism of the disease, model systems (both cellular and animal) used in studying AMD, the list of various regenerative therapies and the current treatments available. The article also highlights on the recent clinical trials using regenerative therapies and management of the disease.
Collapse
Affiliation(s)
- Ishita Shome
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Neethi C Thathapudi
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Ophthalmology and Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Bindu Madhav Reddy Aramati
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhavani S Kowtharapu
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jaganmohan R Jangamreddy
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
28
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
29
|
Patel SH, Lamba DA. Factors Affecting Stem Cell-Based Regenerative Approaches in Retinal Degeneration. Annu Rev Vis Sci 2023; 9:155-175. [PMID: 37713278 DOI: 10.1146/annurev-vision-120222-012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Inherited and age-associated vision loss is often associated with degeneration of the cells of the retina, the light-sensitive layer at the back of the eye. The mammalian retina, being a postmitotic neural tissue, does not have the capacity to repair itself through endogenous regeneration. There has been considerable excitement for the development of cell replacement approaches since the isolation and development of culture methods for human pluripotent stem cells, as well as the generation of induced pluripotent stem cells. This has now been combined with novel three-dimensional organoid culture systems that closely mimic human retinal development in vitro. In this review, we cover the current state of the field, with emphasis on the cell delivery challenges, role of the recipient immunological microenvironment, and challenges related to connectivity between transplanted cells and host circuitry both locally and centrally to the different areas of the brain.
Collapse
Affiliation(s)
- Sachin H Patel
- Department of Ophthalmology, University of California, San Francisco, California, USA;
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San Francisco, California, USA;
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
30
|
Dong C, Zou D, Duan H, Hu X, Zhou Q, Shi W, Li Z. Ex vivo cultivated retinal pigment epithelial cell transplantation for the treatment of rabbit corneal endothelial dysfunction. EYE AND VISION (LONDON, ENGLAND) 2023; 10:34. [PMID: 37528478 PMCID: PMC10394777 DOI: 10.1186/s40662-023-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Stem cell therapy is a promising strategy for the treatment of corneal endothelial dysfunction, and the need to find functional alternative seed cells of corneal endothelial cells (CECs) is urgent. Here, we determined the feasibility of using the retinal pigment epithelium (RPE) as an equivalent substitute for the treatment of corneal endothelial dysfunction. METHODS RPE cells and CECs in situ were obtained from healthy New Zealand male rabbits, and the similarities and differences between them were analyzed by electron microscopy, immunofluorescent staining, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Rabbit primary RPE cells and CECs were isolated and cultivated ex vivo, and Na+/K+-ATPase activity and cellular permeability were detected at passage 2. The injection of cultivated rabbit primary RPE cells, CECs and human embryonic stem cell (hESC)-derived RPE cells was performed on rabbits with corneal endothelial dysfunction. Then, the therapeutic effects were evaluated by corneal transparency, central corneal thickness, enzyme linked immunosorbent assay (ELISA), qRT-PCR and immunofluorescent staining. RESULTS The rabbit RPE cells were similar in form to CECs in situ and ex vivo, showing a larger regular hexagonal shape and a lower cell density, with numerous tightly formed cell junctions and hemidesmosomes. Moreover, RPE cells presented a stronger barrier and ionic pumping capacity than CECs. When intracamerally injected into the rabbits, the transplanted primary RPE cells could dissolve corneal edema and decrease corneal thickness, with effects similar to those of CECs. In addition, the transplantation of hESC-derived RPE cells exhibited a similar therapeutic effect and restored corneal transparency and thickness within seven days. qRT-PCR results showed that the expressions of CEC markers, like CD200 and S100A4, increased, and the RPE markers OTX2, BEST1 and MITF significantly decreased in the transplanted RPE cells. Furthermore, we have demonstrated that rabbits transplanted with hESC-derived RPE cells maintained normal corneal thickness and exhibited slight pigmentation in the central cornea one month after surgery. Immunostaining results showed that the HuNu-positive transplanted cells survived and expressed ZO1, ATP1A1 and MITF. CONCLUSION RPE cells and CECs showed high structural and functional similarities in barrier and pump characteristics. Intracameral injection of primary RPE cells and hESC-derived RPE cells can effectively restore rabbit corneal clarity and thickness and maintain normal corneal function. This study is the first to report the effectiveness of RPE cells for corneal endothelial dysfunction, suggesting the feasibility of hESC-derived RPE cells as an equivalent substitute for CECs.
Collapse
Affiliation(s)
- Chunxiao Dong
- Department of Medicine, Qingdao University, Qingdao, 266071, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Dulei Zou
- Department of Medicine, Qingdao University, Qingdao, 266071, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Xiangyue Hu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Zongyi Li
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China.
| |
Collapse
|
31
|
Maeda T, Takahashi M. iPSC-RPE in Retinal Degeneration: Recent Advancements and Future Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041308. [PMID: 36690464 PMCID: PMC10411862 DOI: 10.1101/cshperspect.a041308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regenerative medicine is a great hope for patients suffering from diseases for which no effective treatment is available. With the creation of induced pluripotent stem cells (iPSCs) in 2006, research and development has accelerated expeditiously, reaching a practical stage worldwide. The iPSC-regenerative medicine in ophthalmology is one of the pioneers, which has kicked off clinical application ahead of other fields owing to its advantages. The clinical safety issues of iPSC-derived retinal pigment epithelial (iPSC-RPE) transplantation for exudative age-related macular degeneration have been addressed to a certain extent. Preparations are being made for the next clinical study based on the improvement of its therapeutic effects and expansion of indications globally. Steady progress toward the practical applications of regenerative medicine for the treatment of retinal disorders is expected in the future while strengthening global cooperation amid various research areas, clinical fields, and regulations.
Collapse
Affiliation(s)
- Tadao Maeda
- Research Center, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Vision Care Cell Therapy, Kobe 650-0047, Japan
| | - Masayo Takahashi
- Research Center, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 6500-047, Japan
- Vision Care Cell Therapy, Kobe 650-0047, Japan
| |
Collapse
|
32
|
Voisin A, Pénaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res 2023; 18:1478-1485. [PMID: 36571345 PMCID: PMC10075102 DOI: 10.4103/1673-5374.361537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development. In the context of cell-based therapies, different cell sources such as embryonic stem cells, induced pluripotent stem cells, or multipotent stem cells can be used for transplantation. In the vast majority of human clinical trials, retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies. In this review, we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| | - Amaury Pénaguin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers; Laboratoires Thea, Clermont-Ferrand, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| |
Collapse
|
33
|
Li JD, Raynor W, Dhalla AH, Viehland C, Trout R, Toth CA, Vajzovic LM, Izatt JA. Quantitative measurements of intraocular structures and microinjection bleb volumes using intraoperative optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:352-366. [PMID: 36698674 PMCID: PMC9842013 DOI: 10.1364/boe.483278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Intraoperative optical coherence tomography (OCT) systems provide high-resolution, real-time visualization and/or guidance of microsurgical procedures. While the use of intraoperative OCT in ophthalmology has significantly improved qualitative visualization of surgical procedures inside the eye, new surgical techniques to deliver therapeutics have highlighted the lack of quantitative information available with current-generation intraoperative systems. Indirect viewing systems used for retinal surgeries introduce distortions into the resulting OCT images, making it particularly challenging to make calibrated quantitative measurements. Using an intraoperative OCT system based in part on the Leica Enfocus surgical microscope interface, we have devised novel measurement procedures, which allowed us to build optical and mathematical models to perform validation of quantitative measurements of intraocular structures for intraoperative OCT. These procedures optimize a complete optical model of the sample arm including the OCT scanner, viewing attachments, and the patient's eye, thus obtaining the voxel pitch throughout an OCT volume and performing quantitative measurements of the dimensions of imaged objects within the operative field. We performed initial validation by measuring objects of known size in a controlled eye phantom as well as ex vivo porcine eyes. The technique was then extended to measure other objects and structures in ex vivo porcine eyes and in vivo human eyes.
Collapse
Affiliation(s)
- Jianwei D. Li
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - William Raynor
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Robert Trout
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Cynthia A. Toth
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Lejla M. Vajzovic
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| |
Collapse
|
34
|
Rohowetz LJ, Koulen P. Stem cell-derived retinal pigment epithelium cell therapy: Past and future directions. Front Cell Dev Biol 2023; 11:1098406. [PMID: 37065847 PMCID: PMC10097914 DOI: 10.3389/fcell.2023.1098406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
The eyes are relatively immune privileged organs, making them ideal targets for stem cell therapy. Researchers have recently developed and described straightforward protocols for differentiating embryonic and induced pluripotent stem cells into retinal pigment epithelium (RPE), making diseases affecting the RPE, such as age-related macular degeneration (AMD), viable targets for stem cell therapy. With the advent of optical coherence tomography, microperimetry, and various other diagnostic technologies, the ability to document disease progression and monitor response to treatments such as stem cell therapy has been significantly enhanced in recent years. Previous phase I/II clinical trials have employed various cell origins, transplant methods, and surgical techniques to identify safe and efficacious methods of RPE transplantation, and many more are currently underway. Indeed, findings from these studies have been promising and future carefully devised clinical trials will continue to enhance our understanding of the most effective methods of RPE-based stem cell therapy, with the hope to eventually identify treatments for disabling and currently incurable retinal diseases. The purpose of this review is to briefly outline existing outcomes from initial clinical trials, review recent developments, and discuss future directions of clinical research involving stem-cell derived RPE cell transplantation for retinal disease.
Collapse
Affiliation(s)
- Landon J. Rohowetz
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
35
|
Liu M, Huang Y, Tao C, Yang W, Chen J, Zhu L, Pan T, Narain R, Nan K, Chen Y. Self-Healing Alginate Hydrogel Formed by Dynamic Benzoxaborolate Chemistry Protects Retinal Pigment Epithelium Cells against Oxidative Damage. Gels 2022; 9:gels9010024. [PMID: 36661792 PMCID: PMC9857501 DOI: 10.3390/gels9010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is considered as a major factor causing retinal pigment epithelium (RPE) dysfunction and finally leading to retinal diseases such as age-related macular degeneration (AMD). Developing hydrogels for RPE cell delivery, especially those with antioxidant feature, is emerging as a promising approach for AMD treatment. Herein, a readily prepared antioxidant alginate-based hydrogel was developed to serve as a cytoprotective agent for RPE cells against oxidative damage. Alg-BOB was synthesized via conjugation of benzoxaborole (BOB) to the polysaccharide backbone. Hydrogels were formed through self-crosslinking of Alg-BOB based on benzoxaborole-diol complexation. The resulting hydrogel showed porous micro-structure, pH dependent mechanical strength and excellent self-healing, remolding, and injectable properties. Moreover, the hydrogel exhibited excellent cytocompatibility and could efficiently scavenge reactive oxygen species (ROS) to achieve an enhanced viability of ARPE-19 cells under oxidative condition. Altogether, our study reveals that the antioxidant Alg-BOB hydrogel represents an eligible candidate for RPE delivery and AMD treatment.
Collapse
Affiliation(s)
- Minhua Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunwen Tao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Weijia Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Junrong Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
- Correspondence: (R.N.); (K.N.); (Y.C.)
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: (R.N.); (K.N.); (Y.C.)
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: (R.N.); (K.N.); (Y.C.)
| |
Collapse
|
36
|
Yang YP, Hsiao YJ, Chang KJ, Foustine S, Ko YL, Tsai YC, Tai HY, Ko YC, Chiou SH, Lin TC, Chen SJ, Chien Y, Hwang DK. Pluripotent Stem Cells in Clinical Cell Transplantation: Focusing on Induced Pluripotent Stem Cell-Derived RPE Cell Therapy in Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:ijms232213794. [PMID: 36430270 PMCID: PMC9696562 DOI: 10.3390/ijms232213794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Human pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), represent valuable cell sources to replace diseased or injured tissues in regenerative medicine. iPSCs exhibit the potential for indefinite self-renewal and differentiation into various cell types and can be reprogrammed from somatic tissue that can be easily obtained, paving the way for cell therapy, regenerative medicine, and personalized medicine. Cell therapies using various iPSC-derived cell types are now evolving rapidly for the treatment of clinical diseases, including Parkinson's disease, hematological diseases, cardiomyopathy, osteoarthritis, and retinal diseases. Since the first interventional clinical trial with autologous iPSC-derived retinal pigment epithelial cells (RPEs) for the treatment of age-related macular degeneration (AMD) was accomplished in Japan, several preclinical trials using iPSC suspensions or monolayers have been launched, or are ongoing or completed. The evolution and generation of human leukocyte antigen (HLA)-universal iPSCs may facilitate the clinical application of iPSC-based therapies. Thus, iPSCs hold great promise in the treatment of multiple retinal diseases. The efficacy and adverse effects of iPSC-based retinal therapies should be carefully assessed in ongoing and further clinical trials.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shania Foustine
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yi-Ching Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsiao-Yun Tai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yu-Chieh Ko
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tai-Chi Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (Y.C.); (D.-K.H.); Tel.: +886-2-2875-2121 (D.-K.H.)
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: (Y.C.); (D.-K.H.); Tel.: +886-2-2875-2121 (D.-K.H.)
| |
Collapse
|
37
|
Zartasht Khan A, Utheim TP, Eidet JR. Retinal Pigment Epithelium Transplantation: Past, Present, and Future. J Ophthalmic Vis Res 2022; 17:574-580. [PMID: 36620704 PMCID: PMC9806312 DOI: 10.18502/jovr.v17i4.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a monolayer of cells situated between photoreceptors and the underlying choroid. It is essential for normal retinal function. Damaged RPE is associated with diseases such as age-related macular degeneration, Stargardt's macular dystrophy, and retinitis pigmentosa. RPE cells can easily be visualized in vivo, sustainable in vitro, and differentiated from stem cells with a relatively straightforward protocol. Due to these properties and the clinical significance of this epithelium in various retinal diseases, RPE transplantation as a treatment modality has gained considerable interest in the last decade. This paper presents the main techniques for RPE transplantation and discusses recent clinically relevant publications.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Lundsiden, Kristiansand, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway
| | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway
| |
Collapse
|
38
|
Tian H, Chen Z, Zhu X, Ou Q, Wang Z, Wu B, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Induced retinal pigment epithelial cells with anti-epithelial-to-mesenchymal transition ability delay retinal degeneration. iScience 2022; 25:105050. [PMID: 36185374 PMCID: PMC9519511 DOI: 10.1016/j.isci.2022.105050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)—CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-β-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment. CRX, MITF-A, NR2E1, and C-MYC transform De-iPSC-RPE cells into iRPE cells iRPE cells have resistance to TGF-β-induced EMT BMP7, FOXF2, LIN7A, PARD6B, and PPM1A mediate the functions of TFs in iRPE cells iRPE cells have better retinal protective function than iPSC-RPE cells
Collapse
|
39
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 368] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
40
|
Zhang S, Ye K, Gao G, Song X, Xu P, Zeng J, Xie B, Zheng D, He L, Ji J, Zhong X. Amniotic Membrane Enhances the Characteristics and Function of Stem Cell-Derived Retinal Pigment Epithelium Sheets by Inhibiting the Epithelial-Mesenchymal Transition. Acta Biomater 2022; 151:183-196. [PMID: 35933105 DOI: 10.1016/j.actbio.2022.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Human pluripotent stem cell-derived retinal pigment epithelium (iRPE) is an attractive cell source for disease modeling and cell replacement therapy of retinal disorders with RPE defects. However, there are still challenges to develop appropriate culture conditions close to in vivo microenvironment to generate iRPE sheets, which mimic more faithfully the characteristics and functions of the human RPE cells. Here, we developed a simple, novel platform to construct authentic iRPE sheets using human amniotic membrane (hAM) as a natural scaffold. The decellularized hAM (dAM) provided a Bruch's membrane (BM)-like bioscaffold, supported the iRPE growth and enhanced the epithelial features, polarity distribution and functional features of iRPE cells. Importantly, RNA-seq analysis was performed to compare the transcriptomes of iRPE cells cultured on different substrates, which revealed the potential mechanism that dAM supported and promoted iRPE growth was the inhibition of epithelial mesenchymal transition (EMT). The tissue-engineered iRPE sheets survived and kept monolayer when transplanted into the subretinal space of rabbits. All together, our results indicate that the dAM imitating the natural BM allows for engineering authentic human RPE sheets, which will provide valuable biomaterials for disease modeling, drug screening and cell replacement therapy of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: : Engineered RPE sheets have a great advantage over RPE cell suspension for transplantation as they support RPE growth in an intact monolayer which RPE functions are dependent on. The substrates for RPE culture play a critical role to maintain the physiological functions of the RPE in stem cell therapies for patients with retinal degeneration. In this study, we constructed engineered iRPE sheets on the decellularized human amniotic membrane (dAM) scaffolds, which contributed to enhancing epithelial features, polarity distribution and functional features of iRPE. dAM exhibited the ability of anti-epithelial mesenchymal transition (EMT) to support iRPE growth. Furtherly, the results of transplanted in vivo demonstrated the feasibility of iRPE sheets in retina regenerative therapy. Engineering RPE sheets on dAM is a promising strategy to facilitate the development of iRPE replacement therapy and retinal disease modeling.
Collapse
Affiliation(s)
- Suai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ke Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingrong Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Liwen He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
41
|
Jin X, Liu J, Wang W, Li J, Liu G, Qiu R, Yang M, Liu M, Yang L, Du X, Lei B. Identification of Age-associated Proteins and Functional Alterations in Human Retinal Pigment Epithelium. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:633-647. [PMID: 35752290 PMCID: PMC9880895 DOI: 10.1016/j.gpb.2022.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
Retinal pigment epithelium (RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood. Here, we isolated human primary RPE (hRPE) cells from 18 eye donors distributed over a wide age range (10-67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted proteins. Age-group related subtypes and age-associated proteins were revealed and potential age-associated mechanisms were validated in ARPE-19 and hRPE cells. The results of proteomic data analysis and verifications suggest that RNF123- and RNF149-related protein ubiquitination plays an important role in protecting hRPE cells from oxidative damage during aging. In older hRPE cells, apoptotic signaling-related pathways were up-regulated, and endoplasmic reticulum organization was down-regulated both in the intracellular and secreted proteomes. Our work paints a detailed molecular picture of hRPE cells during the aging process and provides new insights into the molecular characteristics of RPE during aging and under other related clinical retinal conditions.
Collapse
Affiliation(s)
- Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China,School of Medicine, Henan Provincial People’s Hospital, Henan University, Zhengzhou 450003, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Jiangfeng Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meng Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Du
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China,Corresponding author.
| |
Collapse
|
42
|
Hall JC, Paull D, Pébay A, Lidgerwood GE. Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clin Exp Ophthalmol 2022; 50:667-677. [PMID: 35739648 PMCID: PMC9546239 DOI: 10.1111/ceo.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 12/05/2022]
Abstract
Human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC‐derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age‐related macular degeneration. Here, we will review the current knowledge gained in understanding the molecular events involved in retinal disease using hPSC‐derived retinal models, in particular RPE models. We will provide examples of various conditions to illustrate the scope of applications associated with the use of hPSC‐derived RPE models.
Collapse
Affiliation(s)
- Jenna C Hall
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute New York New York USA
| | - Alice Pébay
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
- Department of Surgery, Royal Melbourne Hospital The University of Melbourne Parkville Victoria Australia
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
43
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
44
|
Qu Y, He Y, Meng B, Zhang X, Ding J, Kou X, Teng W, Shi S. Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomater 2022; 149:258-272. [PMID: 35830925 DOI: 10.1016/j.actbio.2022.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Billions of cells undergo apoptosis every day in the human body, resulting in the generation of a large number of apoptotic vesicles (apoVs) to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. In this study, we showed that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) produced larger numbers of apoVs than human umbilical cord mesenchymal stem cells (UMSCs) do when induced by staurosporine. In addition to expressing the general apoV markers cleaved caspase 3, Annexin V, calreticulin, ALIX, CD63 and TSG101, ESC-apoVs inherited pluripotent-specific molecules SOX2 from ESCs in a caspase 3-dependent manner. Moreover, ESC-apoVs could promote mouse skin wound healing via transferring SOX2 into skin MSCs via activating Hippo signaling pathway. Collectively, these findings reveal that apoVs are capable of inheriting pluripotent molecules from ESCs to energize adult stem cells, suggesting the potential to use PSC-apoVs for clinical applications. STATEMENT OF SIGNIFICANCE: Apoptotic vesicles (apoVs) are essential to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. This study showed that PSC-apoVs produced 100 times more apoVs than human umbilical cord mesenchymal stem cells (UMSCs). Despite expressing the general apoV makers, PSC-apoVs inherited pluripotent-specific molecule SOX2 from PSCs in a caspase 3-dependent manner. Moreover, PSC-apoVs promote mouse skin wound healing via transferring SOX2 into skin MSCs, thus activating Hippo signaling pathway. These findings reveal that apoVs are capable of inheriting pluripotent molecules from PSCs to energize adult stem cells, thus providing a cell-free strategy for clinical applications of PSCs.
Collapse
Affiliation(s)
- Yan Qu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Junjun Ding
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
45
|
Gullapalli VK, Zarbin MA. New Prospects for Retinal Pigment Epithelium Transplantation. Asia Pac J Ophthalmol (Phila) 2022; 11:302-313. [PMID: 36041145 DOI: 10.1097/apo.0000000000000521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Retinal pigment epithelium (RPE) transplants rescue photoreceptors in selected animal models of retinal degenerative disease. Early clinical studies of RPE transplants as treatment for age-related macular degeneration (AMD) included autologous and allogeneic transplants of RPE suspensions and RPE sheets for atrophic and neovascular complications of AMD. Subsequent studies explored autologous RPE-Bruch membrane-choroid transplants in patients with neovascular AMD with occasional marked visual benefit, which establishes a rationale for RPE transplants in late-stage AMD. More recent work has involved transplantation of autologous and allogeneic stem cell-derived RPE for patients with AMD and those with Stargardt disease. These early-stage clinical trials have employed RPE suspensions and RPE monolayers on biocompatible scaffolds. Safety has been well documented, but evidence of efficacy is variable. Current research involves development of better scaffolds, improved modulation of immune surveillance, and modification of the extracellular milieu to improve RPE survival and integration with host retina.
Collapse
Affiliation(s)
| | - Marco A Zarbin
- Iinstitute of Ophthalmology and visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, US
| |
Collapse
|
46
|
Yan T, Yang N, Hu W, Zhang X, Li X, Wang Y, Kong J. Differentiation and Maturation Effect of All-trans Retinoic Acid on Cultured Fetal RPE and Stem Cell-Derived RPE Cells for Cell-Based Therapy. Curr Eye Res 2022; 47:1300-1311. [PMID: 35763026 DOI: 10.1080/02713683.2022.2079144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Clinical trials using fetal retinal pigment epithelium (fRPE), human embryonic stem cell (hESC)-derived RPE, or human induced pluripotent stem cell (hiPSC)-derived RPE for cell-based therapy for degenerative retinal diseases have been carried out. We investigated the culture-induced changes in passaged fRPE, hESC-RPE and hiPSC-RPE cells and explored the differentiation and maturation effect of all-trans retinoic acid (ATRA) on cells for manufacturing and screening high quality RPE cells for clinical transplantation. METHODS RPE cell lines were set up and the culture-induced changes in subsequent passages caused by manipulating plating density, dissociation method and repeated passaging were studied by microscope, real-time quantitative PCR, western blot and immunofluorescent assays. Gene and protein expression and functional characteristics of RPE cells incubated with ATRA were evaluated. RESULTS Compared with fRPE, hESC-RPE and hiPSC-RPE showed decreased gene and protein expression of RPE markers. RPE cells underwent mesenchymal changes showing increased expression of mesenchymal markers including a-SMA, N-cadherin, fibronectin and decreased expression of RPE markers including RPE65, E-cadherin and ZO-1, as a subsequence of low plating density, inappropriate dissociated method, and repeated passaging. RPE cells treated by ATRA showed increased expression of RPE markers and increased expression of negative complement regulatory proteins (CRPs), and increased transepithelial resistance as well. CONCLUSIONS Differences in protein and gene expression among three RPE types exist. ATRA can increase RPE markers, CRPs gene expression in fRPE and stem cell-derived RPE. These can be used to guide the standard of screening RPE cells for clinical translational cell therapy.
Collapse
Affiliation(s)
- Tingyu Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Ophthalmology, the Fourth People's Hospital of Shenyang, No. 20 Huanghe Street, Huanggu District, Shenyang, Liaoning Province 110000, P. R. China
| | - Na Yang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Medical Genetics, China Medical University, Shenyang, 110122, P. R. China
| | - Wei Hu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, No.2428 Yuhe Road, Weifang 261031, Shandong, China
| | - Xinxin Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Xuedong Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Youjin Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Jun Kong
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| |
Collapse
|
47
|
Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells 2022; 11:cells11131984. [PMID: 35805069 PMCID: PMC9265327 DOI: 10.3390/cells11131984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Collapse
Affiliation(s)
- Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofre
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-035-288
| |
Collapse
|
48
|
Li L, Yu Y, Lin S, Hu J. Changes in best-corrected visual acuity in patients with dry age-related macular degeneration after stem cell transplantation: systematic review and meta-analysis. Stem Cell Res Ther 2022; 13:237. [PMID: 35672801 PMCID: PMC9172101 DOI: 10.1186/s13287-022-02931-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Stem cell transplantation may improve visual acuity in patients with dry age-related macular degeneration. Herein, we aimed to summarise the evidence on the risks and benefits of stem cell transplantation for improving visual acuity, including the risk of adverse events. Methods Data were obtained from the PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials databases, and each database was interrogated from the date of inception until 19 March 2022. The rates of visual acuity outcomes and adverse events associated with stem cell transplantation were examined. All statistical analyses were conducted using Review Manager 5.4. The study was registered with PROSPERO (CRD 42022322902). Results The analysis examined 10 studies (102 patients), including one and three, randomised and non-randomised clinical trials, and one and five, multicentre prospective and prospective clinical trials, respectively. Meta-analysis showed changes in best-corrected visual acuity in the study eyes after stem cell transplantation (6 months: risk ratio [RR] = 17.00, 95% confidence interval [CI] 6.08–47.56, P < 0.00001; 12 months: RR = 11.00, 95% CI 2.36–51.36, P = 0.002). Subgroup analysis showed that different stem cell types achieved better best-corrected visual acuity at post-operative 6 months, compared to that observed at baseline. Four cases of related ocular adverse events and no related systemic adverse events were reported. Conclusion This meta-analysis suggests that stem cell transplantation may improve best-corrected visual acuity in dry age-related macular degeneration, based on small sample sizes and fewer randomised controlled trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02931-y.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
49
|
Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells 2022; 11:cells11111853. [PMID: 35681550 PMCID: PMC9180434 DOI: 10.3390/cells11111853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has advanced our understanding of the molecular mechanisms of human disease, drug discovery, and regenerative medicine. As such, the use of iPSCs in drug development and validation has shown a sharp increase in the past 15 years. Furthermore, many labs have been successful in reproducing many disease phenotypes, often difficult or impossible to capture, in commonly used cell lines or animal models. However, there still remain limitations such as the variability between iPSC lines as well as their maturity. Here, we aim to discuss the strategies in generating iPSC-derived cardiomyocytes and neurons for use in disease modeling, drug development and their use in cell therapy.
Collapse
|
50
|
Jin C, Ou Q, Chen J, Wang T, Zhang J, Wang Z, Wang Y, Tian H, Xu JY, Gao F, Wang J, Li J, Lu L, Xu GT. Chaperone-mediated autophagy plays an important role in regulating retinal progenitor cell homeostasis. Stem Cell Res Ther 2022; 13:136. [PMID: 35365237 PMCID: PMC8973999 DOI: 10.1186/s13287-022-02809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To explore the function and regulatory mechanism of IFITM3 in mouse neural retinal progenitor cells (mNRPCs), which was found to be very important not only in the development of the retina in embryos but also in NRPCs after birth. METHODS Published single-cell sequencing data were used to analyze IFITM3 expression in mNRPCs. RNA interference was used to knock down the expression of IFITM3. CCK-8 assays were used to analyze cell viability. RNA-seq was used to assess mRNA expression, as confirmed by real-time quantitative PCR, and immunofluorescence assays and western blots were used to validate the levels of relative proteins, and autophagy flux assay. Lysosomal trackers were used to track the organelle changes. RESULTS The results of single-cell sequencing data showed that IFITM3 is highly expressed in the embryo, and after birth, RNA-seq showed high IFITM3 expression in mNRPCs. Proliferation and cell viability were greatly reduced after IFITM3 was knocked down. The cell membrane system and lysosomes were dramatically changed, and lysosomes were activated and evidently agglomerated in RAMP-treated cells. The expression of LAMP1 was significantly increased with lysosome agglomeration after treatment with rapamycin (RAMP). Further detection showed that SQSTM1/P62, HSC70 and LAMP-2A were upregulated, while no significant difference in LC3A/B expression was observed; no autophagic flux was generated. CONCLUSION IFITM3 regulates mNRPC viability and proliferation mainly through chaperone-mediated autophagy (CMA) but not macroautophagy (MA). IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of CMA to eliminate deleterious factors in cells.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|