1
|
Jia H, Moore M, Wadhwa M, Burns C. Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells. Stem Cells Int 2024; 2024:6153235. [PMID: 39687754 PMCID: PMC11649354 DOI: 10.1155/sci/6153235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) have emerged as a promising source of autologous cells with great potential to produce novel cell therapy for ischemic vascular diseases. However, their clinical application still faces numerous challenges including safety concerns such as the potential aberrant immunogenicity derived from the reprogramming process. This study investigated immunological phenotypes of iPSC-ECs by a side-by-side comparison with primary human umbilical vein ECs (HUVECs). Three types of human iPSC-ECs, NIBSC8-EC generated in house and two commercial iPSC-ECs, alongside HUVECs, were examined for surface expression of proteins of immune relevance under resting conditions and after cytokine activation. All iPSC-EC populations failed to express major histocompatibility complex (MHC) Class II on their surface following interferon-gamma (IFN-γ) treatment but showed similar basal and IFN-γ-stimulated expression levels of MHC Class I of HUVECs. Multiple iPSC-ECs also retained constitutive and tumor necrosis factor-alpha (TNF-α)-stimulated expression levels of intercellular adhesion molecule-1 (ICAM-1) like HUVECs. However, TNF-α induced a differential expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) on iPSC-ECs. Furthermore, real-time monitoring of proliferation of human peripheral blood mononuclear cells (PBMCs) cocultured on an endothelial monolayer over 5 days showed that iPSC-ECs provoked distinct dynamics of PBMC proliferation, which was generally decreased in alloreactivity and IFN-γ-stimulated proliferation of PBMCs compared with HUVECs. Consistently, in the conventional mixed lymphocyte reaction (MLR), the proliferation of total CD3+ and CD4+ T cells after 5-day cocultures with multiple iPSC-EC populations was largely reduced compared to HUVECs. Last, multiple iPSC-EC cocultures secreted lower levels of proinflammatory cytokines than HUVEC cocultures. Collectively, iPSC-ECs manifested many similarities, but also some disparities with a generally weaker inflammatory immune response than primary ECs, indicating that iPSC-ECs may possibly exhibit hypoimmunogenicity corresponding with less risk of immune rejection in a transplant setting, which is important for safe and effective cell therapies.
Collapse
Affiliation(s)
- Haiyan Jia
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Melanie Moore
- Therapeutic Reference Materials, Standards Lifecycle, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Meenu Wadhwa
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Chris Burns
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| |
Collapse
|
2
|
Song SJ, Nam Y, Rim YA, Ju JH, Sohn Y. Comparative analysis of regulations and studies on stem cell therapies: focusing on induced pluripotent stem cell (iPSC)-based treatments. Stem Cell Res Ther 2024; 15:447. [PMID: 39574212 PMCID: PMC11583560 DOI: 10.1186/s13287-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Stem cell therapies have emerged as a promising approach in regenerative medicine, demonstrating potential in personalized medicine, disease modeling, and drug discovery. Therapies based on induced pluripotent stem cells (iPSCs) particularly stand out for their ability to differentiate into various cell types while avoiding ethical concerns. However, the development and application of these therapies are influenced by varying regulatory frameworks across countries. This study provides a comparative analysis of regulations and research on stem cell therapies in key regions: The European Union (EU), Switzerland, South Korea, Japan, and the United States. First, the study reviews the regulatory frameworks on stem cell therapies. The EU and Switzerland maintain rigorous guidelines that prioritize safety and ethical considerations, which can hinder innovation. In contrast, the United States adopts a more flexible regulatory stance, facilitating the rapid development of stem cell therapies. South Korea and Japan take a balanced approach by incorporating practices from both regimes. These regulatory differences reflect each country's unique priorities and impact the pace and scope of stem cell therapy development. Moreover, the study examines global trends in clinical trials on stem cell treatments based on data obtained from two sources: ClinicalTrials.gov and ICTRP. Findings indicate a significant growth in the number of clinical trials since 2008, particularly in that involving iPSCs. Therapeutic studies involving iPSCs predominantly target conditions affecting the cardiovascular and nervous systems which are considered vital. The results put emphasis on the safety of stem cell treatments. Meanwhile, the number of such trials also varies by country. The United States and Japan, where relatively flexible guidelines on stem cell research are adopted, are in a leading position. However, countries in the EU fall behind with rigorous regulations imposed. This reflects the need for more flexible regulatory guidance for active development of stem cell therapies. The findings underscore the importance of legal frameworks in facilitating innovation while ensuring safety. Regulatory agencies in different countries should collaborate to achieve a balanced global standard to ensure the safe and efficient advancement of stem cell therapies. Global regulatory convergence will promote international collaboration in research and the applicability of new treatments.
Collapse
Affiliation(s)
- Seohyun Jennie Song
- Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Yoojun Nam
- YiPSCELL Inc., L2 Omnibus Park, Banpo-Dearo 222, Seocho-Gu, Seoul, 06591, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- YiPSCELL Inc., L2 Omnibus Park, Banpo-Dearo 222, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- YiPSCELL Inc., L2 Omnibus Park, Banpo-Dearo 222, Seocho-Gu, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
3
|
Krivec N, de Deckersberg EC, Lei Y, Delbany DA, Regin M, Verhulst S, van Grunsven LA, Sermon K, Spits C. Gain of 1q confers an MDM4-driven growth advantage to undifferentiated and differentiating hESC while altering their differentiation capacity. Cell Death Dis 2024; 15:852. [PMID: 39572522 PMCID: PMC11582570 DOI: 10.1038/s41419-024-07236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Gain of 1q is a highly recurrent chromosomal abnormality in human pluripotent stem cells. In this work, we show that gains of 1q impact the differentiation capacity to derivates of the three germ layers, leading to mis-specification to cranial placode and non-neural ectoderm during neuroectoderm differentiation. Also, we found a weaker expression of lineage-specific markers in hepatoblasts and cardiac progenitors. Competition assays show that the cells retain their selective advantage during differentiation, which is mediated by a higher expression of MDM4, a gene located in the common region of gain. MDM4 drives the winner phenotype of the mutant cells in both the undifferentiated and differentiating state by reducing the cells' sensitivity to DNA damage through decreased p53-mediated apoptosis. Finally, we found that cell density in culture plays a key role in promoting the competitive advantage of the cells by increasing DNA damage.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| |
Collapse
|
4
|
Ishida M, Masuda T, Sakai N, Nakai-Futatsugi Y, Kamao H, Shiina T, Takahashi M, Sugita S. Graft survival of major histocompatibility complex deficient stem cell-derived retinal cells. COMMUNICATIONS MEDICINE 2024; 4:187. [PMID: 39349587 PMCID: PMC11442691 DOI: 10.1038/s43856-024-00617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Gene editing of immunomodulating molecules is a potential transplantation strategy to control immune rejection. As we noticed the successful transplantation of retinal pigment epithelium (RPE) derived from embryonic stem cells of a cynomolgus monkey that accidentally lacked MHC class II (MHC-II) molecules, we hypothesized immune rejection could be evaded by suppressing MHC-II. METHODS Gene editing by the Crispr/Cas9 system was performed in induced pluripotent stem cells derived from a cynomolgus monkey (miPSCs) for targeted deletion of the gene coding class II MHC trans-activator (CIITA). Then the CIITA-knocked out miPSCs were differentiated into RPE cells to generate miPSC-derived MHC-II knockout RPE. The MHC-II knockout or wild-type RPEs were transplanted into the eyes of healthy cynomolgus monkeys. All monkeys used in this study were male. RESULTS Here we show when MHC-II knockout RPE are transplanted into monkey eyes, they show suppressed immunogenicity with no infiltration of inflammatory cells, leading to successful engraftment. CONCLUSIONS Our results reasonably evidence the efficacy of MHC-II knockout iPSC-RPE transplants for clinical application.
Collapse
Affiliation(s)
- Masaaki Ishida
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- Department of Ophthalmology, Toyama University, Toyama, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- VC Cell Therapy Inc, Kobe, Japan
- Ritsumeikan University, Research Organization of Science and Technology, Kusatsu, Japan
| | - Noriko Sakai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- VC Cell Therapy Inc, Kobe, Japan
| | - Yoko Nakai-Futatsugi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan.
- VC Cell Therapy Inc, Kobe, Japan.
- Ritsumeikan University, Research Organization of Science and Technology, Kusatsu, Japan.
| | - Hiroyuki Kamao
- Department of Ophthalmology, Kawasaki Medical School, Okayama, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University, School of Medicine, Kanagawa, Isehara, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
- Ritsumeikan University, Research Organization of Science and Technology, Kusatsu, Japan
- Kobe City Eye Hospital, Department of Ophthalmology, Kobe, Japan
- Vision Care Inc, Kobe, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan.
- Kobe City Eye Hospital, Department of Ophthalmology, Kobe, Japan.
- Vision Care Inc, Kobe, Japan.
| |
Collapse
|
5
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
6
|
Terheyden-Keighley D, Hühne M, Berger T, Hiller B, Martins S, Gamerschlag A, Sabour D, Meffert A, Kislat A, Slotta C, Hafezi F, Lichte J, Sudheer S, Tessmer K, Psathaki K, Ader M, Kogler G, Greber B. GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy. Stem Cells Transl Med 2024; 13:898-911. [PMID: 39042522 PMCID: PMC11386223 DOI: 10.1093/stcltm/szae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/08/2024] [Indexed: 07/25/2024] Open
Abstract
Cell therapeutic applications based on induced pluripotent stem cells (iPSCs) appear highly promising and challenging at the same time. Good manufacturing practice (GMP) regulations impose necessary yet demanding requirements for quality and consistency when manufacturing iPSCs and their differentiated progeny. Given the scarcity of accessible GMP iPSC lines, we have established a corresponding production workflow to generate the first set of compliant cell banks. Hence, these lines met a comprehensive set of release specifications and, for instance, displayed a low overall mutation load reflecting their neonatal origin, cord blood. Based on these iPSC lines, we have furthermore developed a set of GMP-compatible workflows enabling improved gene targeting at strongly enhanced efficiencies and directed differentiation into critical cell types: A new protocol for the generation of retinal pigment epithelium (RPE) features a high degree of simplicity and efficiency. Mesenchymal stromal cells (MSCs) derived from iPSCs displayed outstanding expansion capacity. A fully optimized cardiomyocyte differentiation protocol was characterized by a particularly high batch-to-batch consistency at purities above 95%. Finally, we introduce a universal immune cell induction platform that converts iPSCs into multipotent precursor cells. These hematopoietic precursors could selectively be stimulated to become macrophages, T cells, or natural killer (NK) cells. A switch in culture conditions upon NK-cell differentiation induced a several thousand-fold expansion, which opens up perspectives for upscaling this key cell type in a feeder cell-independent approach. Taken together, these cell lines and improved manipulation platforms will have broad utility in cell therapy as well as in basic research.
Collapse
Affiliation(s)
| | | | | | - Björn Hiller
- Catalent Düsseldorf GmbH, 40764 Langenfeld, Germany
| | | | | | | | | | | | | | | | - Jens Lichte
- Catalent Düsseldorf GmbH, 40764 Langenfeld, Germany
| | | | - Karen Tessmer
- Center for Regenerative Therapies Dresden (CRTD) and Center for Molecular and Cellular Bioengineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Katherina Psathaki
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, 49076 Osnabrück, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD) and Center for Molecular and Cellular Bioengineering, Dresden University of Technology, 01307 Dresden, Germany
| | - Gesine Kogler
- Institute of Transplantation Diagnostics and Cell Therapeutics and Jose Carreras Stem Cell Bank, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Boris Greber
- Catalent Düsseldorf GmbH, 40764 Langenfeld, Germany
| |
Collapse
|
7
|
Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, Manstein F, Drakhlis L, Haase A, Halloin C, Martin U, Zweigerdt R. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc 2024; 19:1911-1939. [PMID: 38548938 DOI: 10.1038/s41596-024-00976-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 07/10/2024]
Abstract
A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.
Collapse
Affiliation(s)
- Nils Kriedemann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| | - Wiebke Triebert
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Jana Teske
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Mira Mertens
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Annika Franke
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Kevin Ullmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Felix Manstein
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Lika Drakhlis
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Alexandra Haase
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Caroline Halloin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Department of Cell Therapy Process Technology, Novo Nordisk, Måløv, Denmark
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
8
|
Bogomiakova ME, Bogomazova AN, Lagarkova MA. Dysregulation of Immune Tolerance to Autologous iPSCs and Their Differentiated Derivatives. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:799-816. [PMID: 38880643 DOI: 10.1134/s0006297924050031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 06/18/2024]
Abstract
Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to obtain a personalized, i.e., patient-specific, cell product transplantation of which should not cause problems related to histocompatibility of the transplanted tissues and organs. At the same time, inconsistent information about the main advantage of autologous iPSC-derivatives - lack of immunogenicity - still casts doubt on the possibility of using such cells beyond immunosuppressive therapy protocols. This review is devoted to immunogenic properties of the syngeneic and autologous iPSCs and their derivatives, as well as to the reasons for dysregulation of their immune tolerance.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
10
|
Sung TC, Chen YH, Wang T, Qian L, Chao WH, Liu J, Pang J, Ling QD, Lee HHC, Higuchi A. Design of dual peptide-conjugated hydrogels for proliferation and differentiation of human pluripotent stem cells. Mater Today Bio 2024; 25:100969. [PMID: 38318478 PMCID: PMC10839443 DOI: 10.1016/j.mtbio.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Completely synthetic cell cultivation materials for human pluripotent stem cells (hPSCs) are important for the future clinical use of hPSC-derived cells. Currently, cell culture materials conjugated with extracellular matrix (ECM)-derived peptides are being prepared using only one specific integrin-targeting peptide. We designed dual peptide-conjugated hydrogels, for which each peptide was selected from different ECM sites: the laminin β4 chain and fibronectin or vitronectin, which can target α6β1 and α2β1 or αVβ5. hPSCs cultured on dual peptide-conjugated hydrogels, especially on hydrogels conjugated with peptides obtained from the laminin β4 chain and vitronectin with a low peptide concentration of 200 μg/mL, showed high proliferation ability over the long term and differentiated into cells originating from 3 germ layers in vivo as well as a specific lineage of cardiac cells. The design of grafting peptides was also important, for which a joint segment and positive amino acids were added into the designed peptide. Because of the designed peptides on the hydrogels, only 200 μg/mL peptide solution was sufficient for grafting on the hydrogels, and the hydrogels supported hPSC cultures long-term; in contrast, in previous studies, greater than 1000 μg/mL peptide solution was needed for the grafting of peptides on cell culture materials.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Yen-Hung Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Ting Wang
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Liu Qian
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Jun Liu
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Jiandong Pang
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan
- Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan
| | - Akon Higuchi
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan
| |
Collapse
|
11
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
12
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
13
|
Kuroda T, Yasuda S, Matsuyama S, Miura T, Sawada R, Matsuyama A, Yamamoto Y, Morioka MS, Kawaji H, Kasukawa T, Itoh M, Akutsu H, Kawai J, Sato Y. ROR2 expression predicts human induced pluripotent stem cell differentiation into neural stem/progenitor cells and GABAergic neurons. Sci Rep 2024; 14:690. [PMID: 38184695 PMCID: PMC10771438 DOI: 10.1038/s41598-023-51082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Despite the development of various in vitro differentiation protocols for the efficient derivation of specific cell types, human induced pluripotent stem cell (hiPSC) lines have varing ability to differentiate into specific lineages. Therefore, surrogate markers for accurately predicting the differentiation propensity of hiPSC lines may facilitate cell-based therapeutic product development and manufacture. We attempted to identify marker genes that could predict the differentiation propensity of hiPSCs into neural stem/progenitor cells (NS/PCs). Using Spearman's rank correlation coefficients, we investigated genes in the undifferentiated state, the expression levels of which were significantly correlated with the neuronal differentiation propensity of several hiPSC lines. Among genes significantly correlated with NS/PC differentiation (P < 0.01), we identified ROR2 as a novel predictive marker. ROR2 expression in hiPSCs was negatively correlated with NS/PC differentiation tendency, regardless of the differentiation method, whereas its knockdown enhanced differentiation. ROR2 regulates NS/PC differentiation, suggesting that ROR2 is functionally essential for NS/PC differentiation. Selecting cell lines with relatively low ROR2 expression facilitated identification of hiPSCs that can differentiate into NS/PCs. Cells with ROR2 knockdown showed increased efficiency of differentiation into forebrain GABAergic neurons compared to controls. These findings suggest that ROR2 is a surrogate marker for selecting hiPSC lines appropriate for NS/PC and GABAergic neuronal differentiations.
Collapse
Affiliation(s)
- Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Center for Reverse TR, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Habikino, Osaka, Japan
| | - Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Rumi Sawada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Akifumi Matsuyama
- Center for Reverse TR, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Habikino, Osaka, Japan
| | - Yumiko Yamamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | | | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Jun Kawai
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
- Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
14
|
Fareez IM, Liew FF, Widera D, Mayeen NF, Mawya J, Abu Kasim NH, Haque N. Application of Platelet-Rich Plasma as a Stem Cell Treatment - an Attempt to Clarify a Common Public Misconception. Curr Mol Med 2024; 24:689-701. [PMID: 37171013 DOI: 10.2174/1566524023666230511152646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, there has been a significant increase in the practice of regenerative medicine by health practitioners and direct-to-consumer businesses globally. Among different tools of regenerative medicine, platelet-rich plasma (PRP) and stem cell-based therapies have received considerable attention. The use of PRP, in particular, has gained popularity due to its easy access, simple processing techniques, and regenerative potential. However, it is important to address a common misconception amongst the general public equating to PRP and stem cells due to the demonstrated efficacy of PRP in treating musculoskeletal and dermatological disorders. Notably, PRP promotes regeneration by providing growth factors or other paracrine factors only. Therefore, it cannot replenish or replace the lost cells in conditions where a large number of cells are required to regenerate tissues and/or organs. In such cases, cellbased therapies are the preferred option. Additionally, other tools of regenerative medicine, such as bioprinting, organoids, and mechanobiology also rely on stem cells for their success. Hence, healthcare and commercial entities offering direct-to-customer regenerative therapies should not mislead the public by claiming that the application of PRP is a stem cell-based therapy. Furthermore, it is important for regulatory bodies to strictly monitor these profit-driven entities to prevent them from providing unregulated regenerative treatments and services that claim a broad variety of benefits with little proof of efficacy, safety concerns, and obscure scientific justification.
Collapse
Affiliation(s)
- Ismail M Fareez
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, 42610, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Naiyareen Fareeza Mayeen
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Planegg- Martinsried, 82152, Germany
- TotiCell Limited, Dhaka, 1209, Bangladesh
| | | | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | | |
Collapse
|
15
|
Knöbel S, Bosio A. Scaling of cell and gene therapies to population. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:145-154. [PMID: 39341651 DOI: 10.1016/b978-0-323-90120-8.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell and gene therapies (CGTs) are intended to address many different diseases, including widespread diseases with millions of patients. The success of CGTs thus depends on the practicability of scaling cell manufacturing to population. It is obvious that process integration and automation are key for the reproducibility, quality, cost-effectiveness, and scalability of cell manufacturing. Still, different manufacturing concepts can be considered depending on the characteristics of cell therapies such as the degree of ex vivo manipulation of cells, the intended treatment scheme for the underlying medical indication, the prevalence of the indication, and the cell dose per final drug product. Here, we explain the characteristics of cellular products and their implications from the perspective of a manufacturer. We outline and exemplify with a list of devices' different strategies and scaling options for CGT manufacturing considering technical and regulatory aspects in the early and late clinical development of cellular products. Finally, we address the need for appropriate in-process and quality controls and the regulatory requirements and options for improvements of a cellular product at different manufacturing stages.
Collapse
Affiliation(s)
- Sebastian Knöbel
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
16
|
Novis T, Takiya CM. Skin Resident Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:205-249. [DOI: 10.1016/b978-0-443-15289-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Kuebler B, Alvarez-Palomo B, Aran B, Castaño J, Rodriguez L, Raya A, Querol Giner S, Veiga A. Generation of a bank of clinical-grade, HLA-homozygous iPSC lines with high coverage of the Spanish population. Stem Cell Res Ther 2023; 14:366. [PMID: 38093328 PMCID: PMC10720139 DOI: 10.1186/s13287-023-03576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-derived cell therapies are an interesting new area in the field of regenerative medicine. One of the approaches to decrease the costs of iPSC-derived therapies is the use of allogenic homozygous human leukocyte antigen (HLA)-matched donors to generate iPSC lines and to build a clinical-grade iPSC bank covering a high percentage of the Spanish population. METHODS The Spanish Stem Cell Transplantation Registry was screened for cord blood units (CBUs) homozygous for the most common HLA-A, HLA-B and HLA-DRB1 haplotypes. Seven donors were selected with haplotypes covering 21.37% of the haplotypes of the Spanish population. CD34-positive hematopoietic progenitors were isolated from the mononuclear cell fraction of frozen cord blood units from each donor by density gradient centrifugation and further by immune magnetic labeling and separation using purification columns. Purified CD34 + cells were reprogrammed to iPSCs by transduction with the CTS CytoTune-iPS 2.1 Sendai Reprogramming Kit. RESULTS The iPSCs generated from the 7 donors were expanded, characterized, banked and registered. Master cell banks (MCBs) and working cell banks (WCBs) from the iPSCs of each donor were produced under GMP conditions in qualified clean rooms. CONCLUSIONS Here, we present the first clinical-grade, iPSC haplobank in Spain made from CD34 + cells from seven cord blood units homozygous for the most common HLA-A, HLA-B and HLA-DRB1 haplotypes within the Spanish population. We describe their generation by transduction with Sendai viral vectors and their GMP-compliant expansion and banking. These haplolines will constitute starting materials for advanced therapy medicinal product development (ATMP).
Collapse
Affiliation(s)
- B Kuebler
- Pluripotent Stem Cell Group, Regenerative Medicine Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - B Alvarez-Palomo
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
| | - B Aran
- Pluripotent Stem Cell Group, Regenerative Medicine Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - J Castaño
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
- Advanced Therapy Platform, Hospital Sant Joan de Déu de Barcelona, Pg. de Sant Joan de Déu, 2, Espluges de Llobregat, 08950, Barcelona, Spain
| | - L Rodriguez
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
| | - A Raya
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Stem Cell Potency Group, Regenerative Medicine Program, Institut d´Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Centre for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| | - S Querol Giner
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain.
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain.
| | - A Veiga
- Pluripotent Stem Cell Group, Regenerative Medicine Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
18
|
Hirai T, Yasuda S, Umezawa A, Sato Y. Country-specific regulation and international standardization of cell-based therapeutic products derived from pluripotent stem cells. Stem Cell Reports 2023; 18:1573-1591. [PMID: 37557074 PMCID: PMC10444560 DOI: 10.1016/j.stemcr.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 08/11/2023] Open
Abstract
Currently, many types of cell-based therapeutic products (CTPs) derived from pluripotent stem cells (PSCs) are being developed in a lot of countries, some of which are in clinical trial stages. CTPs are classified differently in different countries and regions. The evaluation of their efficacy, safety, and quality also differs from that for conventional small-molecule drugs and biopharmaceuticals, which reflects the complex properties of living cells and unmet medical needs. Since there are no international guidelines to evaluate CTPs, including PSC-derived products, it is necessary to be aware of differences in relevant laws and regulations in different countries and regions. International consortia are organized and actively working to standardize/harmonize the evaluation methods and regulations to facilitate the development and global distribution of PSC-derived CTPs. In this paper, we outline the regulations related to PSC-derived CTPs in the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use founding regions (US, EU/UK, Japan) and introduce representative consortia working on their standardization.
Collapse
Affiliation(s)
- Takamasa Hirai
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan.
| |
Collapse
|
19
|
Kobold S, Bultjer N, Stacey G, Mueller SC, Kurtz A, Mah N. History and current status of clinical studies using human pluripotent stem cells. Stem Cell Reports 2023; 18:1592-1598. [PMID: 37028422 PMCID: PMC10444540 DOI: 10.1016/j.stemcr.2023.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
The Human Pluripotent Stem Cell Registry established a database of clinical studies using human pluripotent stem cells (PSCs) as starting material for cell therapies. Since 2018, we have observed a switch toward human induced pluripotent stem cells (iPSCs) from human embryonic stem cells. However, rather than using iPSCs for personalized medicines, allogeneic approaches dominate. Most treatments target ophthalmopathies, and genetically modified iPSCs are used to generate tailored cells. We observe a lack of standardization and transparency about the PSCs lines used, characterization of the PSC-derived cells, and the preclinical models and assays applied to show efficacy and safety.
Collapse
Affiliation(s)
- Sabine Kobold
- Fraunhofer-Institut für Biomedizinische Technik (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Nils Bultjer
- Fraunhofer-Institut für Biomedizinische Technik (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Glyn Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley SG88HZ, UK
| | - Sabine C Mueller
- Fraunhofer-Institut für Biomedizinische Technik (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Andreas Kurtz
- Fraunhofer-Institut für Biomedizinische Technik (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany; Berlin Institute of Health Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nancy Mah
- Fraunhofer-Institut für Biomedizinische Technik (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany.
| |
Collapse
|
20
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
21
|
Screening techniques to identify genomic instability of pluripotent stem cells in ensuring the safety of applications in regenerative medicine. J Stem Cells Regen Med 2023; 19:1-2. [PMID: 37366407 PMCID: PMC10290817 DOI: 10.46582/jsrm.1901001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
|
22
|
Bogomiakova ME, Sekretova EK, Anufrieva KS, Khabarova PO, Kazakova AN, Bobrovsky PA, Grigoryeva TV, Eremeev AV, Lebedeva OS, Bogomazova AN, Lagarkova MA. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res Ther 2023; 14:77. [PMID: 37038186 PMCID: PMC10088155 DOI: 10.1186/s13287-023-03308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells. Meanwhile, the possibility of NK-cell activation has not been previously considered. This study focused on the comparison of autologous and allogeneic immune response to iPSC-derived cells and isogeneic parental somatic cells used for reprogramming. METHODS We established an isogeneic cell model consisting of parental dermal fibroblasts, fibroblast-like iPSC-derivatives (iPS-fibro) and iPS-fibro lacking beta-2-microglobulin (B2M). Using the cells obtained from two patients, we analyzed the activation of autologous and allogeneic T-lymphocytes and NK-cells co-cultured with target cells. RESULTS Here we report that cells differentiated from iPSCs can be recognized by NK-cells rather than by autologous T-cells. We observed that iPS-fibro elicited a high level of NK-cell degranulation and cytotoxicity, while isogeneic parental skin fibroblasts used to obtain iPSCs barely triggered an NK-cell response. iPSC-derivatives with B2M knockout did not cause an additional increase in NK-cell activation, although they were devoid of HLA-I, the major inhibitory molecules for NK-cells. Transcriptome analysis revealed a significant imbalance of ligands for activating and inhibitory NK-cell receptors in iPS-fibro. Compared to parental fibroblasts, iPSC-derivatives had a reduced expression of HLA-I simultaneously with an increased gene expression of major activating ligands, such as MICA, NECTIN2, and PVR. The lack of inhibitory signals might be due to insufficient maturity of cells differentiated from iPSCs. In addition, we showed that pretreatment of iPS-fibro with proinflammatory cytokine IFNγ restored the ligand imbalance, thereby reducing the degranulation and cytotoxicity of NK-cells. CONCLUSION In summary, we showed that iPSC-derived cells can be sensitive to the cytotoxic potential of autologous NK-cells regardless of HLA-I status. Thus, the balance of ligands for NK-cell receptors should be considered prior to iPSC-based cell therapies. Trial registration Not applicable.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435.
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435.
| | - Elizaveta K Sekretova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| | - Ksenia S Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Polina O Khabarova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| | - Anastasia N Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Pavel A Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | | | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| |
Collapse
|
23
|
Vitillo L, Anjum F, Hewitt Z, Stavish D, Laing O, Baker D, Barbaric I, Coffey P. The isochromosome 20q abnormality of pluripotent cells interrupts germ layer differentiation. Stem Cell Reports 2023; 18:782-797. [PMID: 36801002 PMCID: PMC10031278 DOI: 10.1016/j.stemcr.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Chromosome 20 abnormalities are some of the most frequent genomic changes acquired by human pluripotent stem cell (hPSC) cultures worldwide. Yet their effects on differentiation remain largely unexplored. We investigated a recurrent abnormality also found on amniocentesis, the isochromosome 20q (iso20q), during a clinical retinal pigment epithelium differentiation. Here we show that the iso20q abnormality interrupts spontaneous embryonic lineage specification. Isogenic lines revealed that under conditions that promote the spontaneous differentiation of wild-type hPSCs, the iso20q variants fail to differentiate into primitive germ layers and to downregulate pluripotency networks, resulting in apoptosis. Instead, iso20q cells are highly biased for extra-embryonic/amnion differentiation following inhibition of DNMT3B methylation or BMP2 treatment. Finally, directed differentiation protocols can overcome the iso20q block. Our findings reveal in iso20q a chromosomal abnormality that impairs the developmental competency of hPSCs toward germ layers but not amnion, which models embryonic developmental bottlenecks in the presence of aberrations.
Collapse
Affiliation(s)
- Loriana Vitillo
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, EC1V 9EL London, UK.
| | - Fabiha Anjum
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, EC1V 9EL London, UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Owen Laing
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Duncan Baker
- Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Pete Coffey
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, EC1V 9EL London, UK; Centre for Stem Cell Biology and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
24
|
Diagnostic Algorithm for Surgical Management of Limbal Stem Cell Deficiency. Diagnostics (Basel) 2023; 13:diagnostics13020199. [PMID: 36673009 PMCID: PMC9858342 DOI: 10.3390/diagnostics13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Limbal stem cell deficiency (LCSD) presents several challenges. Currently, there is no clearly defined systematic approach to LSCD diagnosis that may guide surgical tactics. METHODS The medical records of 34 patients with LSCD were analyzed. Diagnostic modalities included standard (visometry, tonometry, visual field testing, slit-lamp biomicroscopy with corneal fluorescein staining, Schirmer test 1, ultrasonography) and advanced ophthalmic examination methods such as anterior segment optical coherence tomography, in vivo confocal microscopy, impression cytology, and enzyme-linked immunoassay. RESULTS Standard ophthalmological examination was sufficient to establish the diagnosis of LSCD in 20 (58.8%) cases, whereas advanced evaluation was needed in 14 (41.2%) cases. Depending on the results, patients with unilateral LSCD were scheduled to undergo glueless simple limbal epithelial transplantation (G-SLET) or simultaneous G-SLET and lamellar keratoplasty. Patients with bilateral LSCD with normal or increased corneal thickness were enrolled in the paralimbal oral mucosa epithelium transplantation (pLOMET) clinical trial. CONCLUSIONS Based on the diagnostic and surgical data analyzed, the key points in LSCD diagnosis were identified, helping to guide the surgeon in selecting the appropriate surgical procedure. Finally, we proposed a novel step-by-step diagnostic algorithm and original surgical guidelines for the treatment of patients with LSCD.
Collapse
|
25
|
Sackett SD, Kaplan SJ, Mitchell SA, Brown ME, Burrack AL, Grey S, Huangfu D, Odorico J. Genetic Engineering of Immune Evasive Stem Cell-Derived Islets. Transpl Int 2022; 35:10817. [PMID: 36545154 PMCID: PMC9762357 DOI: 10.3389/ti.2022.10817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Genome editing has the potential to revolutionize many investigative and therapeutic strategies in biology and medicine. In the field of regenerative medicine, one of the leading applications of genome engineering technology is the generation of immune evasive pluripotent stem cell-derived somatic cells for transplantation. In particular, as more functional and therapeutically relevant human pluripotent stem cell-derived islets (SCDI) are produced in many labs and studied in clinical trials, there is keen interest in studying the immunogenicity of these cells and modulating allogeneic and autoimmune immune responses for therapeutic benefit. Significant experimental work has already suggested that elimination of Human Leukocytes Antigen (HLA) expression and overexpression of immunomodulatory genes can impact survival of a variety of pluripotent stem cell-derived somatic cell types. Limited work published to date focuses on stem cell-derived islets and work in a number of labs is ongoing. Rapid progress is occurring in the genome editing of human pluripotent stem cells and their progeny focused on evading destruction by the immune system in transplantation models, and while much research is still needed, there is no doubt the combined technologies of genome editing and stem cell therapy will profoundly impact transplantation medicine in the future.
Collapse
Affiliation(s)
- Sara D. Sackett
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States,*Correspondence: Sara D. Sackett,
| | - Samuel J. Kaplan
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Samantha A. Mitchell
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Matthew E. Brown
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Adam L. Burrack
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, MN,Center for Immunology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Shane Grey
- Immunology Division, Garvan Institute of Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
26
|
Takada K, Nakatani R, Moribe E, Yamazaki-Fujigaki S, Fujii M, Furuta M, Suemori H, Kawase E. Efficient derivation and banking of clinical-grade human embryonic stem cell lines in accordance with Japanese regulations. Regen Ther 2022; 21:553-559. [DOI: 10.1016/j.reth.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 11/08/2022] Open
|
27
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
28
|
Petkova R, Chelenkova P, Arabadjiev B, Pankov R, Chakarov S. Characterization of the individual capacity for repair of genotoxic damage of a Bulgarian hESC line and two commonly used stabilized cell lines. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Rumena Petkova
- Faculty of Medicine, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | | | - Borislav Arabadjiev
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Roumen Pankov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
29
|
Zhang YA, Stacey GN. Translating stem cell research into development of cellular drugs-a perspective from manufacture of stem cell products and CMC considerations. Cell Prolif 2022; 55:e13203. [PMID: 35165957 PMCID: PMC9357354 DOI: 10.1111/cpr.13203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
The development of human pluripotent stem cell (PSC)-derived medicinal products has been gathering steam in recent years, but the translation of research protocols into GMP production remains a daunting task. The challenges not only reside with the nature of cellular therapeutics but are also rooted in the general inexperience in industry-scale production of stem cell products. Manufacturers of PSC-derived products should be aware of the technical nuances and take a holistic approach toward early planning and engagement with their academic partners. While not all issues will be readily resolved soon, the collective knowledge and consensus by the manufacturers and key stakeholders will help to guide rapid progression of the field.
Collapse
Affiliation(s)
| | - Glyn N. Stacey
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
| |
Collapse
|
30
|
Stacey GN, Cao J, Hu B, Zhou Q. Manufacturing with pluripotent stem cells (
PSConf
2021): Key issues for future research and development. Cell Prolif 2022; 55:e13301. [PMID: 35933704 PMCID: PMC9357356 DOI: 10.1111/cpr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells (hPSC) have the capability to deliver novel cell‐based medicines that could transform medical treatments for a wide range of diseases including age‐related degenerative disorders and traumatic injury. In spite of significant investment in this area, due to the novel nature of these hPSC‐based medicines, there are challenges in almost all aspects of their manufacturing including bioprocessing, characterization and delivery. The Chinese Academy of Sciences and the Chinese Society for Stem Cell Research have collaborated to create a new discussion forum called PSConf 2021 (Pluripotent Stem Cell Conference 2021), intended to promote exchanges in communication on cutting‐edge developments and international coordination in hPSC manufacturing. The PSConf 2021 addressed crucial topics in stem cell‐based manufacturing, including stem cell differentiation, culture scale‐up, product formulation and release. This report summarizes the proceedings and conclusions from the discussion sessions, and it is accompanied by publication of individual papers from the speakers at the PSConf 2021.
Collapse
Affiliation(s)
- Glyn N. Stacey
- International Stem Cell Banking Initiative Barley Herts UK
- National Stem Cell Resource Center Chinese Academy of Sciences Beijing China
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
| | - Jingyi Cao
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
| | - Baoyang Hu
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Beijing Institute for Stem Cell and Regenerative Medicine Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Qi Zhou
- Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Beijing Institute for Stem Cell and Regenerative Medicine Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
31
|
Ilic D, Ogilvie C. Pluripotent stem cells in clinical setting - new developments and overview of current status. Stem Cells 2022; 40:791-801. [PMID: 35671338 PMCID: PMC9512105 DOI: 10.1093/stmcls/sxac040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The number of clinical trials using human pluripotent stem cells (hPSC)—both embryonic and induced pluripotent stem cells (hESC/iPSC)—has expanded in the last several years beyond expectations. By the end of 2021, a total of 90 trials had been registered in 13 countries with more than 3000 participants. However, only US, Japan, China, and the UK are conducting both hESC- and hiPSC-based trials. Together US, Japan, and China have registered 78% (70 out of 90) of all trials worldwide. More than half of all trials (51%) are focused on the treatment of degenerative eye diseases and malignancies, enrolling nearly 2/3 of all participants in hPSC-based trials. Although no serious adverse events resulting in death or morbidity due to hPSC-based cellular therapy received have been reported, information about safety and clinical efficacy are still very limited. With the availability of novel technologies for precise genome editing, a new trend in the development of hPSC-based cellular therapies seems to be emerging. Engineering universal donor hPSC lines has become a holy grail in the field. Indeed, because of its effectiveness and simplicity nanomedicine and in vivo delivery of gene therapy could become more advantageous than cellular therapies for the treatment of multiple diseases. In the future, for the best outcome, hPSC-based cellular therapy might be combined with other technological advancements, such as biomimetic epidural electrical stimulation that can restore trunk and leg motor functions after complete spinal injury.
Collapse
Affiliation(s)
- Dusko Ilic
- Division of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,Assisted Conception Unit, London, United Kingdom
| | | |
Collapse
|
32
|
Tannenbaum SE, Reubinoff BE. Advances in hPSC expansion towards therapeutic entities: A review. Cell Prolif 2022; 55:e13247. [PMID: 35638399 PMCID: PMC9357360 DOI: 10.1111/cpr.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
For use in regenerative medicine, large‐scale manufacturing of human pluripotent stem cells (hPSCs) under current good manufacturing practice (cGMPs) is required. Much progress has been made since culturing under static two‐dimensional (2D) conditions on feeders, including feeder‐free cultures, conditioned and xeno‐free media, and three‐dimensional (3D) dynamic suspension expansion. With the advent of horizontal‐blade and vertical‐wheel bioreactors, scale‐out for large‐scale production of differentiated hPSCs became possible; control of aggregate size, shear stress, fluid hydrodynamics, batch‐feeding strategies, and other process parameters became a reality. Moving from substantially manipulated processes (i.e., 2D) to more automated ones allows easer compliance to current good manufacturing practices (cGMPs), and thus easier regulatory approval. Here, we review the current advances in the field of hPSC culturing, advantages, and challenges in bioreactor use, and regulatory areas of concern with respect to these advances. Manufacturing trends to reduce risk and streamline large‐scale manufacturing will bring about easier, faster regulatory approval for clinical applications.
Collapse
Affiliation(s)
- Shelly E Tannenbaum
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin E Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
33
|
Kurtz A, Mah N, Chen Y, Fuhr A, Kobold S, Seltmann S, Müller SC. Human pluripotent stem cell registry: Operations, role and current directions. Cell Prolif 2022; 55:e13238. [PMID: 35522426 PMCID: PMC9357359 DOI: 10.1111/cpr.13238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
The human plutiripotent stem cell registry (hPSCreg) is a global database for human embryonic and induced pluripotent stem cells (hESC, hiPSC). The publicly accessible Registry (https://hpscreg.eu) was set up to provide a transparent resource of quality‐assessed hPSC lines as well as to increase reproducibility of research and interoperability of data.
Collapse
Affiliation(s)
- Andreas Kurtz
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany.,BIH Center for Regenerative Therapies, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Ying Chen
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Antonie Fuhr
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Sabine Kobold
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | | | - Sabine C Müller
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| |
Collapse
|
34
|
Clinical Grade Human Pluripotent Stem Cell-Derived Engineered Skin Substitutes Promote Keratinocytes Wound Closure In Vitro. Cells 2022; 11:cells11071151. [PMID: 35406716 PMCID: PMC8998132 DOI: 10.3390/cells11071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds, such as leg ulcers associated with sickle cell disease, occur as a consequence of a prolonged inflammatory phase during the healing process. They are extremely hard to heal and persist as a significant health care problem due to the absence of effective treatment and the uprising number of patients. Indeed, there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Development in skin engineering leads to a small catalogue of available substitutes manufactured in Good Manufacturing Practices compliant (GMPc) conditions. Those substitutes are produced using primary cells that could limit their use due to restricted sourcing. Here, we propose GMPc protocols to produce functional populations of keratinocytes and fibroblasts derived from pluripotent stem cells to reconstruct the associated dermo-epidermal substitute with plasma-based fibrin matrix. In addition, this manufactured composite skin is biologically active and enhances in vitro wounding of keratinocytes. The proposed composite skin opens new perspectives for skin replacement using allogeneic substitute.
Collapse
|
35
|
Matheus F, Raveh T, Oro AE, Wernig M, Drukker M. Is hypoimmunogenic stem cell therapy safe in times of pandemics? Stem Cell Reports 2022; 17:711-714. [PMID: 35334219 PMCID: PMC9023772 DOI: 10.1016/j.stemcr.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
The manipulation of human leukocyte antigens (HLAs) and immune modulatory factors in “universal” human pluripotent stem cells (PSCs) holds promise for immunological tolerance without HLA matching. This paradigm raises concerns should "universal" grafts become virally infected. Furthermore, immunological manipulation might functionally impair certain progeny, such as hematopoietic stem cells. We discuss the risks and benefits of hypoimmunogenic PSCs, and the need to further advance HLA matching and autologous strategies.
Collapse
Affiliation(s)
- Friederike Matheus
- Institute for Stem Cell Research, iPSC Core Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center for Cancer Stem Cell Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Micha Drukker
- Institute for Stem Cell Research, iPSC Core Facility, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC RA Leiden, The Netherlands.
| |
Collapse
|
36
|
Manzini P, Peli V, Rivera-Ordaz A, Budelli S, Barilani M, Lazzari L. Validation of an automated cell counting method for cGMP manufacturing of human induced pluripotent stem cells. BIOTECHNOLOGY REPORTS 2022; 33:e00708. [PMID: 35198419 PMCID: PMC8851089 DOI: 10.1016/j.btre.2022.e00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
|
37
|
Manstein F, Ullmann K, Triebert W, Zweigerdt R. Process control and in silico modeling strategies for enabling high density culture of human pluripotent stem cells in stirred tank bioreactors. STAR Protoc 2021; 2:100988. [PMID: 34917976 PMCID: PMC8666714 DOI: 10.1016/j.xpro.2021.100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The routine therapeutic and industrial applications of human pluripotent stem cells (hPSCs) require their constant mass supply by robust, efficient, and economically viable bioprocesses. Our protocol describes the fully controlled expansion of hPSCs in stirred tank bioreactors (STBRs) enabling cell densities of 35 × 106 cells/mL while reducing culture medium consumption by 75%. This is achieved by in silico process modeling and computable upscaling. We provide a detailed blueprint for systematic process development of hPSCs and their progenies. For complete details on the use and execution of this protocol, please refer to Manstein et al. (2021).
Collapse
Affiliation(s)
- Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Corresponding author
| | - Kevin Ullmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Corresponding author
| |
Collapse
|
38
|
Kusindarta DL, Wihadmadyatami H. Conditioned medium derived from bovine umbilical mesenchymal stem cells as an alternative source of cell-free therapy. Vet World 2021; 14:2588-2595. [PMID: 34903913 PMCID: PMC8654746 DOI: 10.14202/vetworld.2021.2588-2595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022] Open
Abstract
Umbilical cord blood (UCB) cells are an important source of mesenchymal stem cells (MSCs). It is known that the umbilical cord is rich in hematopoietic stem cells, which influenced research on ontogeny and transplantation (allogeneic transplantation). In recent years, stem cell research has emerged as an area of major interest due to its prospective applications in various aspects of both human and veterinary medicine. Moreover, it is known that the application of MSCs has several weaknesses. The use of these cells has limitations in terms of tumorigenesis effect, delivery, safety, and variability of therapeutic response, which led to the use of secretomes as an alternative to cell-free therapy. The main obstacle in its use is the availability of human UCB as an origin of MSCs and MSCs’ secretomes, which are often difficult to obtain. Ethical issues regarding the use of stem cells based on human origin are another challenge, so an alternative is needed. Several studies have demonstrated that MSCs obtained from bovine umbilical cords have the same properties and express the same surface markers as MSCs obtained from human umbilical cords. Therefore, secretomes from MSCs derived from domestic animals (bovine) can possibly be used in human and veterinary medicine. This finding would contribute significantly to improve cell-free therapy. At present, the use of UCB MSCs derived from domestic animals, especially bovines, is very restricted, and only limited data about bovine UCB are available. Therefore, the aim of this review was to provide an updated overview of cell-free therapy and discuss the new possibilities introduced by the generation of this therapy derived from bovine umbilical MSCs as a promising tool in developing modern and efficient treatment strategies.
Collapse
Affiliation(s)
- Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
39
|
Martin-Lopez M, Fernandez-Muñoz B, Canovas S. Pluripotent Stem Cells for Spinal Cord Injury Repair. Cells 2021; 10:cells10123334. [PMID: 34943842 PMCID: PMC8699436 DOI: 10.3390/cells10123334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition of the central nervous system that strongly reduces the patient’s quality of life and has large financial costs for the healthcare system. Cell therapy has shown considerable therapeutic potential for SCI treatment in different animal models. Although many different cell types have been investigated with the goal of promoting repair and recovery from injury, stem cells appear to be the most promising. Here, we review the experimental approaches that have been carried out with pluripotent stem cells, a cell type that, due to its inherent plasticity, self-renewal, and differentiation potential, represents an attractive source for the development of new cell therapies for SCI. We will focus on several key observations that illustrate the potential of cell therapy for SCI, and we will attempt to draw some conclusions from the studies performed to date.
Collapse
Affiliation(s)
- Maria Martin-Lopez
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain;
- Correspondence: (M.M.-L.); (S.C.)
| | - Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain;
| | - Sebastian Canovas
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain
- Correspondence: (M.M.-L.); (S.C.)
| |
Collapse
|
40
|
Rivera-Ordaz A, Peli V, Manzini P, Barilani M, Lazzari L. Critical Analysis of cGMP Large-Scale Expansion Process in Bioreactors of Human Induced Pluripotent Stem Cells in the Framework of Quality by Design. BioDrugs 2021; 35:693-714. [PMID: 34727354 PMCID: PMC8561684 DOI: 10.1007/s40259-021-00503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 10/28/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are manufactured as advanced therapy medicinal products for tissue replacement applications. With this aim, the feasibility of hiPSC large-scale expansion in existing bioreactor systems under current good manufacturing practices (cGMP) has been tested. Yet, these attempts have lacked a paradigm shift in culture settings and technologies tailored to hiPSCs, which jeopardizes their clinical translation. The best approach for industrial scale-up of high-quality hiPSCs is to design their manufacturing process by following quality-by-design (QbD) principles: a scientific, risk-based framework for process design based on relating product and process attributes to product quality. In this review, we analyzed the hiPSC expansion manufacturing process implementing the QbD approach in the use of bioreactors, stressing the decisive role played by the cell quantity, quality and costs, drawing key QbD concepts directly from the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Collapse
Affiliation(s)
- Araceli Rivera-Ordaz
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Paolo Manzini
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Mario Barilani
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| |
Collapse
|
41
|
Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. NPJ Regen Med 2021; 6:72. [PMID: 34725374 PMCID: PMC8560749 DOI: 10.1038/s41536-021-00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
The translation of laboratory-scale bioprocess protocols and technologies to industrial scales and the application of human induced pluripotent stem cell (hiPSC) derivatives in clinical trials globally presents optimism for the future of stem-cell products to impact healthcare. However, while many promising therapeutic approaches are being tested in pre-clinical studies, hiPSC-derived products currently account for a small fraction of active clinical trials. The complexity and volatility of hiPSCs present several bioprocessing challenges, where the goal is to generate a sufficiently large, high-quality, homogeneous population for downstream differentiation-the derivatives of which must retain functional efficacy and meet regulatory safety criteria in application. It is argued herein that one of the major challenges currently faced in improving the robustness of routine stem-cell biomanufacturing is in utilizing continuous, meaningful assessments of molecular and cellular characteristics from process to application. This includes integrating process data with biological characteristic and functional assessment data to model the interplay between variables in the search for global optimization strategies. Coupling complete datasets with relevant computational methods will contribute significantly to model development and automation in achieving process robustness. This overarching approach is thus crucially important in realizing the potential of hiPSC biomanufacturing for transformation of regenerative medicine and the healthcare industry.
Collapse
|
42
|
Del Olmo B, Merkurjev D, Yao L, Pinsach-Abuin ML, Garcia-Bassets I, Almenar-Queralt A. Analysis of Clonal Composition in Human iPSC and ESC and Derived 2D and 3D Differentiated Cultures. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:31-47. [PMID: 34505265 DOI: 10.1007/7651_2021_414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human induced pluripotent and embryonic stem cell cultures (hiPSC/hESC) are phenotypically heterogeneous and prone to clonal deviations during subculturing and differentiation. Clonal deviations often emerge unnoticed, but they can change the biology of the cell culture with a negative impact on experimental reproducibility. Here, we describe a computational workflow to profile the bulk clonal composition in a hiPSC/hESC culture that can also be used to infer clonal deviations. This workflow processes data obtained with two versions of the same method. The two versions-epigenetic and transcriptomic-rely on a mechanism of stochastic H3K4me3 deposition during hiPSC/hESC derivation. This mechanism generates a signature of ten or more H3K4me3-enriched clustered protocadherin (PCDH) promoters distinct in every single cell. The aggregate of single-cell signatures provides an identificatory feature in every hiPSC/hESC line. This feature is stably transmitted to the cell progeny of the culture even after differentiation unless there is a clonal deviation event that changes the internal balance of single-cell signatures. H3K4me3 signatures can be profiled by chromatin immunoprecipitation and next-generation sequencing (ChIP-seq). Alternatively, an equivalent PCDH-expression version can be profiled by RNA-seq in PCDH-expressing hiPSC/hESC-derived cells (such as neurons, astrocytes, and cardiomyocytes; and, in long-term cultures, such as cerebral organoids). Notably, our workflow can also distinguish genetically identical hiPSC/hESC lines derived from the same patient or generated in the same editing process. Together, we propose a method to improve data sharing and reproducibility in the hiPSC and hESC fields.
Collapse
Affiliation(s)
- Bernat Del Olmo
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Likun Yao
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mel Lina Pinsach-Abuin
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Fernandez-Muñoz B, Garcia-Delgado AB, Arribas-Arribas B, Sanchez-Pernaute R. Human Neural Stem Cells for Cell-Based Medicinal Products. Cells 2021; 10:2377. [PMID: 34572024 PMCID: PMC8469920 DOI: 10.3390/cells10092377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.
Collapse
Affiliation(s)
- Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Ana Belen Garcia-Delgado
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Blanca Arribas-Arribas
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| |
Collapse
|
44
|
Vitillo L, Vallier L. Derivation of Multipotent Neural Progenitors from Human Embryonic Stem Cells for Cell Therapy and Biomedical Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2520:81-100. [PMID: 33948873 DOI: 10.1007/7651_2021_401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Long-term neuroepithelial-like stem cells (lt-NES) derived from human embryonic stem cells are a stable self-renewing progenitor population with high neurogenic potential and phenotypic plasticity. Lt-NES are amenable to regional patterning toward neurons and glia subtypes and thus represent a valuable source of cells for many biomedical applications. For use in regenerative medicine and cell therapy, lt-NES and their progeny require derivation with high-quality culture conditions suitable for clinical use. In this chapter, we describe a robust method to derive multipotent and expandable lt-NES based on good manufacturing practice and cell therapy-grade reagents. We further describe fully defined protocols to terminally differentiate lt-NES toward GABA-ergic, dopaminergic, and motor neurons.
Collapse
Affiliation(s)
- Loriana Vitillo
- Jeffrey Cheah Biomedical Centre, Department of Surgery, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. .,Institute of Ophthalmology, University College London, London, UK.
| | - Ludovic Vallier
- Jeffrey Cheah Biomedical Centre, Department of Surgery, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|
46
|
Menasché P. Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Front Bioeng Biotechnol 2020; 8:601560. [PMID: 33195177 PMCID: PMC7649799 DOI: 10.3389/fbioe.2020.601560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In the ongoing quest for the “ideal” cell type for heart repair, pluripotent stem cells (PSC) derived from either embryonic or reprogrammed somatic cells have emerged as attractive candidates because of their unique ability to give rise to lineage-specific cells and to transplant them at the desired stage of differentiation. The technical obstacles which have initially hindered their clinical use have now been largely overcome and several trials are under way which encompass several different diseases, including heart failure. So far, there have been no safety warning but it is still too early to draw definite conclusions regarding efficacy. In parallel, mechanistic studies suggest that the primary objective of “remuscularizing” the heart with PSC-derived cardiac cells can be challenged by their alternate use as ex vivo sources of a biologically active extracellular vesicle-enriched secretome equally able to improve heart function through harnessing endogenous repair pathways. The exclusive use of this secretome would combine the advantages of a large-scale production more akin to that of a biological medication, the likely avoidance of cell-associated immune and tumorigenicity risks and the possibility of intravenous infusions compatible with repeated dosing.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.,PARCC, INSERM, University of Paris, Paris, France
| |
Collapse
|