1
|
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Muthu S. Evidence-based orthobiologic practice: Current evidence review and future directions. World J Orthop 2024; 15:908-917. [DOI: 10.5312/wjo.v15.i10.908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
The field of orthopedic and regenerative medicine is rapidly evolving with the increasing utilization of orthobiologic. These biologically derived therapies, including platelet-rich plasma, mesenchymal stem cells, bone marrow aspirate concentrate, stromal vascular fraction (SVF), and autologous chondrocyte implantation, are gaining traction for their potential to enhance the body's natural healing processes. They offer a promising alternative to traditional surgical interventions for musculoskeletal injuries and degenerative conditions. Current evidence suggests significant benefits of orthobiologics in treating conditions like osteoarthritis, tendon injuries, and spinal disorders, yet inconsistencies in treatment protocols and outcomes persist. The global market for orthobiologics is projected to grow substantially, driven by advancements in biologic therapies such as adipose-derived stem cells and SVF, and the demand for minimally invasive treatments. Despite their promise, regulatory and ethical challenges, as well as the need for high-quality, standardized research, remain significant obstacles. Future directions in the field include advancements in delivery systems, personalized medicine approaches, and the exploration of novel sources like induced pluripotent stem cells, aiming for more targeted and effective treatments. Collaborative efforts are crucial to overcoming these challenges and ensuring the safe and effective application of orthobiologics in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopedic, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Sangeetha Balaji
- Department of Orthopedic, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopedics, Government Medical College and Hospital, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
2
|
McGrath E, Herson MR, Kuehnert MJ, Moniz K, Szczepiorkowski ZM, Pruett TL. A WHO remit to improve global standards for medical products of human origin. Bull World Health Organ 2024; 102:707-714. [PMID: 39318889 PMCID: PMC11418839 DOI: 10.2471/blt.24.291569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
In recent decades, considerable advances have been made in assuring the safety of blood transfusion and organ transplantation. However, with the increasing movement of medical products of human origin across international boundaries, there is a need to enhance global norms and governance. These products, which include blood, organs, tissues, cells, human milk and faecal microbiota, are today crucial for health care but they also pose unique risks due to their human origin, such as disease transmission and graft failure. Moreover, the demand for medical products of human origin often exceeds supply, leading to dependence on international supply chains, and emerging technologies like cell and gene therapy present further challenges because of their unproven efficacy and long-term risks. Current regulatory mechanisms, especially in low- and middle-income countries, are insufficient. The World Health Organization (WHO) has both the mandate and experience to lead the development of international quality and safety standards, consistent product nomenclature, and robust traceability and biovigilance systems. An international, multistakeholder approach is critical for addressing the complexities of how medical products of human origin are used globally and for ensuring their safety. This approach will require promoting uniform product descriptions, enhancing digital communication systems and leveraging existing resources to support countries in establishing regulations for these products. As illustrated by World Health Assembly resolution WHA77.4 on transplantation in 2024, WHO's ongoing efforts to ensure the safe, efficient and ethical use of medical products of human origin worldwide provide the opportunity to galvanize international cooperation on establishing norms.
Collapse
Affiliation(s)
- Eoin McGrath
- International Council for Commonality in Blood Banking Automation, Calle Balcells 29 baixos, Barcelona, 08024, Spain
| | - Marisa R Herson
- Faculty of Health, Deakin University School of Medicine, Geelong, Australia
| | - Matthew J Kuehnert
- Hackensack Meridian School of Medicine, Nutley, United States of America (USA)
| | - Karen Moniz
- International Council for Commonality in Blood Banking Automation, Redlands, USA
| | | | - Timothy L Pruett
- Department of Surgery, University of Minnesota, Minneapolis, USA
| |
Collapse
|
3
|
Gesheff MG, Scalzitti DA, Bains SS, Dubin J, Delanois RE. Time to Total Knee Arthroplasty (TKA) Post Intra-Articular Injection. J Clin Med 2024; 13:3764. [PMID: 38999330 PMCID: PMC11242844 DOI: 10.3390/jcm13133764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Disease-modifying treatments are not currently developed to target the underlying causes of knee osteoarthritis (KOA). Corticosteroids (CS), hyaluronic acid (HA), and platelet-rich plasma (PRP) intra-articular (IA) injections are commonly used for patients that do not respond to non-pharmacological treatments, oral nonsteroidal anti-inflammatory, or pain medications to address solely KOA symptoms. Utilizing TKA as an endpoint in the KOA disease progression provides a basis to determine efficacy of this treatment pathway. The primary objective is to evaluate a large national database to determine the time between first injection and total knee arthroplasty in patients solely administered intra-articular IA, CS, and HA. Methods: A retrospective query was performed on a national, all-payer claims database (PearlDiver, Colorado Springs, CO, USA), a composite of over 160 million Health Insurance Portability and Accountability Act compliant orthopedic records across all states and territories of the United States spanning 2016 to 2022. The database was queried to produce three distinct cohorts for analysis (PRP, HA, and CS). A 4:1 case match was conducted to compare cohorts receiving a subsequent TKA. Kaplan-Meier survival analysis analyzed the TKA-free survival of patients within each group at 6 months and 1 to 4 years. The log-rank test was performed for comparisons between survival cohorts. Results: The PRP cohort had a total population of 3240 patients, of which 71 (2.2%) received a subsequent TKA. The corticosteroid cohort had a total population of 1,382,572, of which 81,271 (5.9%) received a subsequent TKA. The HA cohort had a total population of 164,000, of which 13,044 (8.0%) received a subsequent TKA. Due to the low population within the PRP group, this group was excluded from comparison. The mean time to TKA from first injection in the HA group was 377.8 days, while in the corticosteroid group it was 370.0 days. The proportions of TKA-free survival for CS and HA when compared at 4 years post-injection was similar between groups (p = 0.05). Discussion and Conclusion: Patients that received only IA-corticosteroids or IA-hyaluronic acid had a similar length of time between the first injection and the total knee arthroplasty associated with the injected joint. This evidence provides information for clinicians and patients alike when contemplating these non-surgical injection modalities for KOA. The similarity observed between these treatments supports the need for future research to determine whether there is any potential for reduction in healthcare costs for KOA treatment prior to TKA.
Collapse
Affiliation(s)
- Martin G. Gesheff
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD 21215, USA; (M.G.G.); (S.S.B.); (J.D.)
- Health, Human Function, and Rehabilitation Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - David A. Scalzitti
- Health, Human Function, and Rehabilitation Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Sandeep S. Bains
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD 21215, USA; (M.G.G.); (S.S.B.); (J.D.)
| | - Jeremy Dubin
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD 21215, USA; (M.G.G.); (S.S.B.); (J.D.)
| | - Ronald E. Delanois
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD 21215, USA; (M.G.G.); (S.S.B.); (J.D.)
| |
Collapse
|
4
|
Resnik DB, Medina RF, Gould F, Church G, Kuzma J. Genes drive organisms and slippery slopes. Pathog Glob Health 2024; 118:348-357. [PMID: 36562087 PMCID: PMC11234912 DOI: 10.1080/20477724.2022.2160895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bioethical debate about using gene drives to alter or eradicate wild populations has focused mostly on issues concerning short-term risk assessment and management, governance and oversight, and public and community engagement, but has not examined big-picture- 'where is this going?'-questions in great depth. In other areas of bioethical controversy, big-picture questions often enter the public forum via slippery slope arguments. Given the incredible potential of gene drive organisms to alter the Earth's biota, it is somewhat surprising that slippery slope arguments have not played a more prominent role in ethical and policy debates about these emerging technologies. In this article, we examine a type of slippery slope argument against using gene drives to alter or suppress wild pest populations and consider whether it has a role to play in ethical and policy debates. Although we conclude that this argument does not provide compelling reasons for banning the use of gene drives in wild pest populations, we believe that it still has value as a morally instructive cautionary narrative that can motivate scientists, ethicists, and members of the public to think more clearly about appropriate vs. inappropriate uses of gene drive technologies, the long-term and cumulative and emergent risks of using gene drives in wild populations, and steps that can be taken to manage these risks, such as protecting wilderness areas where people can enjoy life forms that have not been genetically engineered.
Collapse
Affiliation(s)
- David B. Resnik
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Jennifer Kuzma
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Hamad L, Ahmed SM, van Eerden E, van Walraven SM, Machin L. Remuneration of donors for cell and gene therapies: an update on the principles and perspective of the World Marrow Donor Association. Bone Marrow Transplant 2024; 59:580-586. [PMID: 38396211 PMCID: PMC11073962 DOI: 10.1038/s41409-024-02246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The cell and gene therapy (CGT) sector has witnessed significant advancement over the past decade, the inception of advanced therapy medicinal products (ATMPs) being one of the most transformational. ATMPs treat serious medical conditions, in some cases providing curative therapy for seriously ill patients. There is interest in pivoting the ATMP development from autologous based treatments to allogenic, to offer faster and greater patient access that should ultimately reduce treatment costs. Consequently, starting material from allogenic donors is required, igniting ethical issues associated with financial gains and donor remuneration within CGT. The World Marrow Donor Association (WMDA) established the Cellular Therapy Committee to identify the role WMDA can play in safeguarding donors and patients in the CGT field. Here we review key ethical principles in relation to donating cellular material for the CGT field. We present the updated statement from WMDA on donor remuneration, which supports non-remuneration as the best way to ensure the safety and well-being of donors and patients alike. This is in line with the fundamental objective of the WMDA to maintain the health and safety of volunteer donors while ensuring high-quality stem cell products are available for all patients. We acknowledge that the CGT field is evolving at a rapid pace and there will be a need to review this position as new practices and applications come to pass.
Collapse
Affiliation(s)
- Lina Hamad
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | | | | | | | | |
Collapse
|
7
|
Rodeo SA. Marketing of Unproven and Unapproved Regenerative Medicine Therapies. Sports Health 2024; 16:312-314. [PMID: 38629755 PMCID: PMC11025520 DOI: 10.1177/19417381241243380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
|
8
|
Hoeyer K, Couturier A, Barawi K, Drew C, Grundtvig A, Lane E, Munk AK, Whiteley LE, Munsie M. Searching for information about stem cells online in an age of artificial intelligence: How should the stem cell community respond? Stem Cell Reports 2024; 19:159-162. [PMID: 38278153 PMCID: PMC10874854 DOI: 10.1016/j.stemcr.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024] Open
Abstract
Patients and their families routinely use the Internet to learn about stem cell research. What they find, is increasingly influenced by ongoing changes in how information is filtered and presented online. This article reflects on recent developments in generative artificial intelligence and how the stem cell community should respond.
Collapse
Affiliation(s)
- Klaus Hoeyer
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Kali Barawi
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Cheney Drew
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Anders Grundtvig
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Emma Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Anders Kristian Munk
- TANTlab, Department of Culture and Learning, Aalborg University, Aalborg, Denmark
| | | | - Megan Munsie
- Stem Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Turner L, Martinez JR, Najjar S, Arachchilage TR, Sahrai V, Wang JC. Regulatory claims made by US businesses engaged in direct-to-consumer marketing of purported stem cell treatments and exosome therapies. Regen Med 2023; 18:857-868. [PMID: 37867326 DOI: 10.2217/rme-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Aim: This study investigated whether US businesses engaged in direct-to-consumer online marketing of purported stem cell therapies and stem cell-derived exosome products made claims concerning the regulatory status of these interventions. Methods: We used data mining and content analysis of company websites to examine regulatory-related representations made by US businesses marketing stem cell treatments and exosome therapies. Results: More than two thirds of such businesses did not make explicit representations about the regulatory status of their marketed products. Businesses that made claims about the regulatory status of the stem cell and exosome products they sold used range of representations concerning the legal standing of these interventions. Conclusion: The absence of information addressing the regulatory status of stem cell interventions and exosome products and the use of what appeared to be inaccurate information concerning the regulatory status of numerous products likely complicates efforts by customers to make informed health-related decisions.
Collapse
Affiliation(s)
- Leigh Turner
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
- Department of Health, Society, & Behavior, University of California Irvine, Irvine, CA 92697-3957, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697-3957, USA
| | - Juan Ramon Martinez
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Shemms Najjar
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Thevin Rajapaksha Arachchilage
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Victoria Sahrai
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| | - Jia Chieng Wang
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Room 3543, Irvine, CA 92697-3957, USA
| |
Collapse
|
10
|
Chen L, Gao J, Feng R, Peng Y. The variability of judicial decisions in the stem cell industry in China. Cell Stem Cell 2023; 30:1294-1298. [PMID: 37802035 DOI: 10.1016/j.stem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
As China's stem cell industry continues to develop, increasing disputes concerning stem cell-based interventions have been brought before the courts. Nonetheless, there is variability in the courts' understanding and attitude toward the regulatory attributes of these interventions, which to some extent has multifaceted impacts on the stem cell field.
Collapse
Affiliation(s)
- Luxia Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jianchao Gao
- Office of Clinical Evaluation of Biological Products, Center for Drug Evaluation, National Medical Products Administration, Beijing 100037, China
| | - Ruohan Feng
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yaojin Peng
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Turner L, Martinez JR, Najjar S, Arachchilage TR, Sahrai V, Wang JC. Safety and efficacy claims made by US businesses marketing purported stem cell treatments and exosome therapies. Regen Med 2023; 18:781-793. [PMID: 37795701 DOI: 10.2217/rme-2023-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Aim: Examining websites of US businesses engaged in direct-to-consumer advertising of putative stem cell treatments and exosome therapies, this study investigated the marketing claims such companies make about the purported safety and efficacy of these products. Methods: Data mining and content analysis of company websites were used to identify and analyze safety and efficacy claims. Results: Of the 978 businesses analyzed, less than half the companies made identifiable claims about the safety and efficacy of their advertised stem cell and exosome products. We also explored how companies framed the stem cell and exosome products they promoted. Representations ranged from assertions that such products are unproven and investigational to claims they constituted cures. Most advertising frames fell between these poles. Conclusion: Some businesses include in their marketing representations claims about the safety and efficacy of advertised products. Businesses that did not make such assertions use other techniques to attract prospective clients.
Collapse
Affiliation(s)
- Leigh Turner
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
- Department of Health, Society, & Behavior, University of California, Irvine, CA 92697-3957, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Juan Ramon Martinez
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Shemms Najjar
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Thevin Rajapaksha Arachchilage
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Victoria Sahrai
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| | - Jia Chieng Wang
- Program in Public Health, University of California Irvine, UCI Health Sciences Complex, 856 Health Sciences Quad, Irvine, CA 92697-3957, USA
| |
Collapse
|
12
|
Ikonomou L, Cuende N, Forte M, Grilley BJ, Levine AD, Munsie M, Rasko JEJ, Turner L, Bidkhori HR, Ciccocioppo R, Grignon F, Srivastava A, Weiss DJ, Zettler P, Levine BL. International Society for Cell & Gene Therapy Position Paper: Key considerations to support evidence-based cell and gene therapies and oppose marketing of unproven products. Cytotherapy 2023; 25:920-929. [PMID: 37517865 DOI: 10.1016/j.jcyt.2023.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 08/01/2023]
Abstract
The field of regenerative medicine, including cellular immunotherapies, is on a remarkable growth trajectory. Dozens of cell-, tissue- and gene-based products have received marketing authorization worldwide while hundreds-to-thousands are either in preclinical development or under clinical investigation in phased clinical trials. However, the promise of regenerative therapies has also given rise to a global industry of direct-to-consumer offerings of prematurely commercialized cell and cell-based products with unknown safety and efficacy profiles. Since its inception, the International Society for Cell & Gene Therapy Committee on the Ethics of Cell and Gene Therapy has opposed the premature commercialization of unproven cell- and gene-based interventions and supported the development of evidence-based advanced therapy products. In the present Guide, targeted at International Society for Cell & Gene Therapy members, we analyze this industry, focusing in particular on distinctive features of unproven cell and cell-based products and the use of tokens of scientific legitimacy as persuasive marketing devices. We also provide an overview of reporting mechanisms for patients who believe they have been harmed by administration of unapproved and unproven products and suggest practical strategies to address the direct-to-consumer marketing of such products. Development of this Guide epitomizes our continued support for the ethical and rigorous development of cell and cell-based products with patient safety and therapeutic benefit as guiding principles.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA; Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, New York, USA.
| | - Natividad Cuende
- Andalusian Transplant Coordination, Servicio Andaluz de Salud; Sevilla, Spain
| | | | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Aaron D Levine
- School of Public Policy, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Megan Munsie
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Leigh Turner
- Department of Health, Society, and Behavior, Program in Public Health; Stem Cell Research Center; Institute for Clinical and Translational Science; Department of Family Medicine; University of California, Irvine; Irvine, California, USA
| | - Hamid R Bidkhori
- Stem Cell and Regenerative Medicine Research Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Felix Grignon
- International Society for Cell & Gene Therapy, Vancouver, Canada
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Ranipet Campus, Ranipet & Centre for Stem Cell Research (a unit of inStem Bengaluru) CMC Campus, Vellore, India
| | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Patricia Zettler
- Moritz College of Law, Drug Enforcement and Policy Center, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Dulak J, Pecyna M. Unproven cell interventions in Poland and the exploitation of European Union law on advanced therapy medicinal products. Stem Cell Reports 2023; 18:1610-1620. [PMID: 37390824 PMCID: PMC10444563 DOI: 10.1016/j.stemcr.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023] Open
Abstract
The global threat of unproven "stem cell therapies" develops despite the repeated statements of scientific organizations and regulatory agencies warning about the improper rationale, lack of effectiveness, and potential health risks of such commercial activities. Here, this problem is discussed from Poland's perspective, where unjustified "stem cell medical experiments" have raised the concern of responsible scientists and physicians. The paper describes how the European Union law on advanced therapy medicinal products and the hospital exemption rule have been used improperly and unlawfully on a mass scale. The article indicates serious scientific, medical, legal, and social issues of these activities.
Collapse
Affiliation(s)
- Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Marlena Pecyna
- Chair of Civil Law, Faculty of Law and Administration, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
14
|
Aderinto N, Abdulbasit MO, Olatunji D. Stem cell-based combinatorial therapies for spinal cord injury: a narrative review of current research and future directions. Ann Med Surg (Lond) 2023; 85:3943-3954. [PMID: 37554849 PMCID: PMC10406006 DOI: 10.1097/ms9.0000000000001034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that can result in lifelong disability. Despite significant progress in SCI research, current treatments only offer limited functional recovery. Stem cell-based combinatorial therapies have emerged promising to enhance neural repair and regeneration after SCI. Combining stem cells with growth factors, biomaterials, and other therapeutic agents can improve outcomes by providing a multifaceted approach to neural repair. However, several challenges must be addressed before these therapies can be widely adopted in clinical practice. Standardisation of stem cell isolation, characterisation, and production protocols ensures consistency and safety in clinical trials. Developing appropriate animal models that accurately mimic human SCI is crucial for successfully translating these therapies. Additionally, optimal delivery methods and biomaterials that support the survival and integration of stem cells into injured tissue must be identified. Despite these challenges, stem cell-based combinatorial therapies for SCI hold great promise. Innovative approaches such as gene editing and the use of neural tissue engineering may further enhance the efficacy of these therapies. Further research and development in this area are critical to advancing the field and providing effective therapies for SCI patients. This paper discusses the current evidence and challenges from the literature on the potential of stem cell-based combinatorial therapies for SCI.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | - Deji Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
15
|
Berg LJ, Brüstle O. Stem cell programming - prospects for perinatal medicine. J Perinat Med 2023:jpm-2022-0575. [PMID: 36809086 DOI: 10.1515/jpm-2022-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023]
Abstract
Recreating human cell and organ systems in vitro has tremendous potential for disease modeling, drug discovery and regenerative medicine. The aim of this short overview is to recapitulate the impressive progress that has been made in the fast-developing field of cell programming during the past years, to illuminate the advantages and limitations of the various cell programming technologies for addressing nervous system disorders and to gauge their impact for perinatal medicine.
Collapse
Affiliation(s)
- Lea J Berg
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
Roslin W, Mansnérus J. From the Integrity of Potency Assays to Safe Clinical Intervention: Legal Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:151-163. [PMID: 37258789 DOI: 10.1007/978-3-031-30040-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Potency assays associated with the efficacy of investigational pharmaceutical products are one of the critical quality attributes that need to be carefully monitored during advanced therapy medicinal product (ATMP) development projects. Ensuring integrity of relevant potency assays for stem cell-based ATMPs is of paramount importance for safety and efficacy of clinical interventions. Yet, due to the complex and heterogeneous nature of stem cell-based ATMPs, creation of an appropriate set of potency assays is associated with a number of specific challenges ranging from intrinsic and operational to legal and regulatory ones. This chapter provides an overview of the EU regulatory landscape for advanced therapies, highlighting important aspects that need to be taken into consideration when preparing a strategic plan to meet the EU regulatory requirements.
Collapse
|
17
|
Li C. Strengthening regulations, recent advances and remaining barriers in stem cell clinical translation in China: 2015-2021 in review. Pharmacol Res 2022; 182:106304. [PMID: 35710062 DOI: 10.1016/j.phrs.2022.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
A new regulatory regime is being implemented under strict scrutiny for translation of stem cell medical practices since 2015 in China. The new mode of governance is strengthening to curb the marketing of unproven stem cell therapeutic products. This article begins with a brief historical overview of stem cell research and development and then focuses on the policies and country-level guidelines in the past years for stem cell translational research. This study reveals several key observations on the major progress made and the challenges associated with clinical translation of stem cells in China. Given that stem cells or stem cell-based therapeutic products are already considered as biological 'drugs', this study would be conducive to a better understanding of China's approach to stem cell translational research, marketisation and industrialization in progress.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou 450003, China; Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan University, 7 Weiwu Road, Zhengzhou 450003, China.
| |
Collapse
|
18
|
Financial risks posed by unproven cell interventions: Estimation of refunds from medical expense deductions in Japan. Stem Cell Reports 2022; 17:1016-1018. [PMID: 35452594 PMCID: PMC9133642 DOI: 10.1016/j.stemcr.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
|
19
|
Matthews KRW, Kawam O, Sprung K, Perin EC, Master Z. Role of Physicians in Guiding Patients Away From Unproven Stem Cell Interventions. Tex Heart Inst J 2022; 49:478691. [PMID: 35258626 DOI: 10.14503/thij-21-7768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Omar Kawam
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, Minnesota
| | | | | | - Zubin Master
- Baker Institute for Public Policy, Rice University, Houston, Texas.,Biomedical Ethics Research Program, Mayo Clinic, Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Moll G, Ankrum JA, Olson SD, Nolta JA. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:2-13. [PMID: 35641163 PMCID: PMC8895495 DOI: 10.1093/stcltm/szab005] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated “Stem Cell Clinics” offering diverse “Unproven Stem Cell Interventions.” This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.
Collapse
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin Brandenburg School of Regenerative Therapies (BSRT), Berlin Institute of Health (BIH) at the Charité—Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Corresponding author: Guido Moll, PhD, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering and Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jan A Nolta
- Director of the Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
21
|
Abstract
Aim: Explore the nature and extent of web-based promotion of stem cell treatments marketed by clinics in the UK. Materials & methods: Web-based analysis of clinics in the UK using predefined variables, with analysis of eligible clinics according to preset criteria of ethical relevance. Results: A majority (79%) of UK clinics were judged to be problematic. Information was found to be lacking, misleading or otherwise problematic in several respects, including a lack of information on risks of adverse effects, unjustifiably optimistic depictions of therapeutic effectiveness, and questionable presentational approaches such as the use of celebrity patient testimonials. Conclusion: In a majority of cases, commercial clinics in the UK portray stem-cell therapies on their websites in ethically questionable ways.
Collapse
Affiliation(s)
- Sami Kamel
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| | - Kevin R Smith
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| |
Collapse
|
22
|
Alt EU, Schmitz C, Bai X. Perspective: Why and How Ubiquitously Distributed, Vascular-Associated, Pluripotent Stem Cells in the Adult Body (vaPS Cells) Are the Next Generation of Medicine. Cells 2021; 10:2303. [PMID: 34571951 PMCID: PMC8467324 DOI: 10.3390/cells10092303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
A certain cell type can be isolated from different organs in the adult body that can differentiate into ectoderm, mesoderm, and endoderm, providing significant support for the existence of a certain type of small, vascular-associated, pluripotent stem cell ubiquitously distributed in all organs in the adult body (vaPS cells). These vaPS cells fundamentally differ from embryonic stem cells and induced pluripotent stem cells in that the latter possess the necessary genetic guidance that makes them intrinsically pluripotent. In contrast, vaPS cells do not have this intrinsic genetic guidance, but are able to differentiate into somatic cells of all three lineages under guidance of the microenvironment they are located in, independent from the original tissue or organ where they had resided. These vaPS cells are of high relevance for clinical application because they are contained in unmodified, autologous, adipose-derived regenerative cells (UA-ADRCs). The latter can be obtained from and re-applied to the same patient at the point of care, without the need for further processing, manipulation, and culturing. These findings as well as various clinical examples presented in this paper demonstrate the potential of UA-ADRCs for enabling an entirely new generation of medicine for the benefit of patients and healthcare systems.
Collapse
Affiliation(s)
- Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
- Isar Klinikum Munich, 80331 Munich, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians University of Munich, 80336 Munich, Germany;
| | - Xiaowen Bai
- Heart and Vascular Institute, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
23
|
Lyons S, Salgaonkar S, Flaherty GT. International stem cell tourism: a critical literature review and evidence-based recommendations. Int Health 2021; 14:132-141. [PMID: 34415026 PMCID: PMC8890798 DOI: 10.1093/inthealth/ihab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Stem cell tourism is an emerging area of medical tourism activity. Frustrated by the slow translation of stem cell research into clinical practice, patients with debilitating conditions often seek therapeutic options that are not appropriately regulated. This review summarises recent developments in the field of stem cell tourism and provides clinicians with the information necessary to provide basic pretravel health advice to stem cell tourists. PubMed and Scopus databases were consulted for relevant publications, using combinations of the terms 'stem cell', 'tourism', 'regenerative medicine', 'international', 'travel medicine' and 'environmental health'. The leading countries in the international stem cell tourism market are the USA, China, India, Thailand and Mexico. As the majority of clinics offering stem cell therapies are based in low- and-middle-income countries, stem cell tourists place themselves at risk of receiving an unproven treatment, coupled with the risk of travel-related illnesses. These clinics do not generally provide even basic travel health information on their websites. In addition to often being ineffective, stem cell therapies are associated with complications such as infection, rejection and tumorigenesis. Physicians, researchers, regulatory bodies, advocacy groups and medical educators are encouraged to work together to improve patient and physician education and address current legislative deficiencies.
Collapse
Affiliation(s)
- Samantha Lyons
- School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland.,Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | - Shival Salgaonkar
- School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Gerard T Flaherty
- School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland.,School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Wang Y, Qiu T, Liang S, Toumi M. An overview of cell and gene therapy development in China. Hum Gene Ther 2021; 33:14-24. [PMID: 34235966 DOI: 10.1089/hum.2021.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
China, the first country worldwide to approve a gene therapy in 2003, almost lost the advantage for a head start in cell and gene therapy (CGT) development due to a lack of clear and strict regulatory frameworks. The rapid advancements of CGTs' development worldwide as well as their therapeutic potential have triggered the government to conduct a spate of regulatory reforms in order to promote normative development of CGTs in China. Encouraged by policy support, the remarkable progress for CGTs in China has been observed over the past few years, thereby catapulting China back into the forefront of CGTs worldwide. This manuscript aims to provide an overview of regulatory reforms, the current development landscape of CGTs, as well as key contributors and challenges for CGT development in China.
Collapse
Affiliation(s)
- Yitong Wang
- Aix-Marseille Universite, 128791, 27 Boulevard Jean Moulin, Marseille, France, 13385;
| | - Tingting Qiu
- Aix-Marseille Universite, 128791, 27 Boulevard Jean Moulin, Marseille, France, 13385;
| | - Shuyao Liang
- Aix-Marseille Universite, 128791, 27 Boulevard Jean Moulin, Marseille, France, 13284;
| | - Mondher Toumi
- Aix-Marseille Universite, 128791, Public Health Department, 27 Boulevard Jean Moulin, Marseille, France, 13385;
| |
Collapse
|