1
|
Barsoum M, Sayadi-Boroujeni R, Stenzel AT, Bussmann P, Lüscher-Firzlaff J, Lüscher B. Sequential deregulation of histone marks, chromatin accessibility and gene expression in response to PROTAC-induced degradation of ASH2L. Sci Rep 2023; 13:22565. [PMID: 38114530 PMCID: PMC10730889 DOI: 10.1038/s41598-023-49284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
The trithorax protein ASH2L is essential for organismal and tissue development. As a subunit of COMPASS/KMT2 complexes, ASH2L is necessary for methylation of histone H3 lysine 4 (H3K4). Mono- and tri-methylation at this site mark active enhancers and promoters, respectively, although the functional relevance of H3K4 methylation is only partially understood. ASH2L has a long half-life, which results in a slow decrease upon knockout. This has made it difficult to define direct consequences. To overcome this limitation, we employed a PROTAC system to rapidly degrade ASH2L and address direct effects. ASH2L loss resulted in inhibition of proliferation of mouse embryo fibroblasts. Shortly after ASH2L degradation H3K4me3 decreased with its half-life varying between promoters. Subsequently, H3K4me1 increased at promoters and decreased at some enhancers. H3K27ac and H3K27me3, histone marks closely linked to H3K4 methylation, were affected with considerable delay. In parallel, chromatin compaction increased at promoters. Of note, nascent gene transcription was not affected early but overall RNA expression was deregulated late after ASH2L loss. Together, these findings suggest that downstream effects are ordered but relatively slow, despite the rapid loss of ASH2L and inactivation of KMT2 complexes. It appears that the systems that control gene transcription are well buffered and strong effects are only beginning to unfold after considerable delay.
Collapse
Affiliation(s)
- Mirna Barsoum
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Roksaneh Sayadi-Boroujeni
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789, Monheim am Rhein, Germany
| | - Alexander T Stenzel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Human Genetics, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Bussmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Barker RA, Carpenter M, Jamieson CHM, Murry CE, Pellegrini G, Rao RC, Song J. Lessons learnt, and still to learn, in first in human stem cell trials. Stem Cell Reports 2023; 18:1599-1609. [PMID: 36563687 PMCID: PMC10444539 DOI: 10.1016/j.stemcr.2022.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Developing cellular therapies is not straightforward. This Perspective summarizes the experience of a group of academic stem cell investigators working in different clinical areas and aims to share insight into what we wished we knew before starting. These include (1) choosing the stem cell line and assessing the genome of both the starting and final product, (2) familiarity with GMP manufacturing, reagent validation, and supply chain management, (3) product delivery issues and the additional regulatory challenges, (4) the relationship between clinical trial design and preclinical studies, and (5) the market approval requirements, pathways, and partnerships needed.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Institute, John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0QQ, UK.
| | | | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Clinical Center, University of California San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive #0695, La Jolla, CA 92037-0695, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology; Departments of Laboratory Medicine & Pathology, Bioengineering, and Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rajesh C Rao
- Departments of Ophthalmology & Visual Sciences, Pathology, and Human Genetics, University of Michigan, Surgery Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | - Jihwan Song
- Jihwan Song, Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea; iPS Bio, Inc., 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
3
|
Zhang Z, Yang C, Wang Z, Guo L, Xu Y, Gao C, Sun Y, Zhang Z, Peng J, Hu M, Jan Lo L, Ma Z, Chen J. Wdr5-mediated H3K4me3 coordinately regulates cell differentiation, proliferation termination, and survival in digestive organogenesis. Cell Death Discov 2023; 9:227. [PMID: 37407577 DOI: 10.1038/s41420-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of β-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.
Collapse
Affiliation(s)
- Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixu Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongpan Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou, 310016, China.
| |
Collapse
|