1
|
Escribá R, Beksac M, Bennaceur-Griscelli A, Glover JC, Koskela S, Latsoudis H, Querol S, Alvarez-Palomo B. Current Landscape of iPSC Haplobanks. Stem Cell Rev Rep 2024:10.1007/s12015-024-10783-7. [PMID: 39276260 DOI: 10.1007/s12015-024-10783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/16/2024]
Abstract
The use of allogeneic induced pluripotent stem cell (iPSC)-derived cell therapies for regenerative medicine offers an affordable and realistic alternative to producing individual iPSC lines for each patient in need. Human Leukocyte Antigens (HLA)-homozygous iPSCs matched in hemi-similarity could provide cell therapies with reduced immune rejection covering a wide range of the population with a few iPSC lines. Several banks of HLA-homozygous iPSCs (haplobanks) have been established worldwide or are underway, to provide clinical grade starting material for cell therapies covering the most frequent HLA haplotypes for certain populations. Harmonizing quality standards among haplobanks and creating a global registry could minimize the collective effort and provide a much wider access to HLA-compatible cell therapies for patients with less frequent haplotypes. In this review we present all the current haplobank initiatives and their potential benefits for the global population.
Collapse
Affiliation(s)
- Rubén Escribá
- Cell Therapy Service, Banc de Sang I Teixits, 106 Passeig de Taulat, 08005, Barcelona, Spain
| | - Meral Beksac
- Ankara Liv Hospital Istinye University and Cord Blood Bank, Ankara University, Ankara, Turkey
| | - Annelise Bennaceur-Griscelli
- CiTHERA, Center of iPS Cell Therapy, Infrastructure INGESTEM University Paris Saclay Inserm U1310, 28 Rue Henri Desbruères, 91100, Corbeil-Essonnes, France
| | - Joel C Glover
- Norwegian Center for Stem Cell Research and Norwegian Core Facility for Human Pluripotent Stem Cells, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Satu Koskela
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Helen Latsoudis
- Information Systems Laboratory, Institute of Computer Sciences, Foundation for Research and Technology Hellas, 70013, Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Sergi Querol
- Cell Therapy Service, Banc de Sang I Teixits, 106 Passeig de Taulat, 08005, Barcelona, Spain
| | - Belén Alvarez-Palomo
- Cell Therapy Service, Banc de Sang I Teixits, 106 Passeig de Taulat, 08005, Barcelona, Spain.
| |
Collapse
|
2
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Mader MM, Gebeyehu G, Jaouni TM, Jacków-Malinowska J, Rami A, Hansen C, Guo Z, Gaddam S, Tate KM, Pappalardo A, Li L, Chow GM, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Cramer A, Bruckner A, Bilousova G, Roop D, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable and cGMP-compatible autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. Nat Commun 2024; 15:5834. [PMID: 38992003 PMCID: PMC11239819 DOI: 10.1038/s41467-024-49400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Torkelson
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shengdi Li
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kelly McCarthy
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Hanson H Zhen
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius M Mader
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gulilat Gebeyehu
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Taysir M Jaouni
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Joanna Jacków-Malinowska
- Department of Dermatology, Columbia University, New York, NY, USA
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Sadhana Gaddam
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Keri M Tate
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lingjie Li
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Grace M Chow
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kevin R Roy
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Patrick S McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Amber Cramer
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jean Y Tang
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA.
| | - Anthony E Oro
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Knöbel S, Bosio A. Scaling of cell and gene therapies to population. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:145-154. [PMID: 39341651 DOI: 10.1016/b978-0-323-90120-8.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell and gene therapies (CGTs) are intended to address many different diseases, including widespread diseases with millions of patients. The success of CGTs thus depends on the practicability of scaling cell manufacturing to population. It is obvious that process integration and automation are key for the reproducibility, quality, cost-effectiveness, and scalability of cell manufacturing. Still, different manufacturing concepts can be considered depending on the characteristics of cell therapies such as the degree of ex vivo manipulation of cells, the intended treatment scheme for the underlying medical indication, the prevalence of the indication, and the cell dose per final drug product. Here, we explain the characteristics of cellular products and their implications from the perspective of a manufacturer. We outline and exemplify with a list of devices' different strategies and scaling options for CGT manufacturing considering technical and regulatory aspects in the early and late clinical development of cellular products. Finally, we address the need for appropriate in-process and quality controls and the regulatory requirements and options for improvements of a cellular product at different manufacturing stages.
Collapse
Affiliation(s)
- Sebastian Knöbel
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
4
|
Bogomiakova ME, Sekretova EK, Anufrieva KS, Khabarova PO, Kazakova AN, Bobrovsky PA, Grigoryeva TV, Eremeev AV, Lebedeva OS, Bogomazova AN, Lagarkova MA. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res Ther 2023; 14:77. [PMID: 37038186 PMCID: PMC10088155 DOI: 10.1186/s13287-023-03308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells. Meanwhile, the possibility of NK-cell activation has not been previously considered. This study focused on the comparison of autologous and allogeneic immune response to iPSC-derived cells and isogeneic parental somatic cells used for reprogramming. METHODS We established an isogeneic cell model consisting of parental dermal fibroblasts, fibroblast-like iPSC-derivatives (iPS-fibro) and iPS-fibro lacking beta-2-microglobulin (B2M). Using the cells obtained from two patients, we analyzed the activation of autologous and allogeneic T-lymphocytes and NK-cells co-cultured with target cells. RESULTS Here we report that cells differentiated from iPSCs can be recognized by NK-cells rather than by autologous T-cells. We observed that iPS-fibro elicited a high level of NK-cell degranulation and cytotoxicity, while isogeneic parental skin fibroblasts used to obtain iPSCs barely triggered an NK-cell response. iPSC-derivatives with B2M knockout did not cause an additional increase in NK-cell activation, although they were devoid of HLA-I, the major inhibitory molecules for NK-cells. Transcriptome analysis revealed a significant imbalance of ligands for activating and inhibitory NK-cell receptors in iPS-fibro. Compared to parental fibroblasts, iPSC-derivatives had a reduced expression of HLA-I simultaneously with an increased gene expression of major activating ligands, such as MICA, NECTIN2, and PVR. The lack of inhibitory signals might be due to insufficient maturity of cells differentiated from iPSCs. In addition, we showed that pretreatment of iPS-fibro with proinflammatory cytokine IFNγ restored the ligand imbalance, thereby reducing the degranulation and cytotoxicity of NK-cells. CONCLUSION In summary, we showed that iPSC-derived cells can be sensitive to the cytotoxic potential of autologous NK-cells regardless of HLA-I status. Thus, the balance of ligands for NK-cell receptors should be considered prior to iPSC-based cell therapies. Trial registration Not applicable.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435.
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435.
| | - Elizaveta K Sekretova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| | - Ksenia S Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Polina O Khabarova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| | - Anastasia N Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Pavel A Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | | | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya, Moscow, Russia, 119435
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia, 119991
| |
Collapse
|
5
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Jackow J, Rami A, Hansen C, Guo Z, Gaddam S, Pappalardo A, Li L, Cramer A, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Bruckner A, Bilousova G, Roop D, Bailey I, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable, GMP-compatible, autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529447. [PMID: 36909618 PMCID: PMC10002612 DOI: 10.1101/2023.02.28.529447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Background Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Jessica L. Torkelson
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Shengdi Li
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kelly McCarthy
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Hanson H. Zhen
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Joanna Jackow
- Department of Dermatology, Columbia University, New York, NY 10032
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology
| | | | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology
| | - Amber Cramer
- Program in Epithelial Biology and Department of Dermatology
| | - Kevin R. Roy
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Patrick S. McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irene Bailey
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Jean Y. Tang
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | | | - Lars M. Steinmetz
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Anthony E. Oro
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| |
Collapse
|
6
|
Qasim W. Genome-edited allogeneic donor "universal" chimeric antigen receptor T cells. Blood 2023; 141:835-845. [PMID: 36223560 PMCID: PMC10651779 DOI: 10.1182/blood.2022016204] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022] Open
Abstract
αβ T cell receptor (TCRαβ) T cells modified to express chimeric antigen receptors (CAR), are now available as authorized therapies for certain B-cell malignancies. However the process of autologous harvest and generation of patient-specific products is costly, with complex logistics and infrastructure requirements. Premanufactured banks of allogeneic donor-derived CAR T cells could help widen applicability if the challenges of HLA-mismatched T-cell therapy can be addressed. Genome editing is being applied to overcome allogeneic barriers, most notably, by disrupting TCRαβ to prevent graft-versus-host disease, and multiple competing editing technologies, including CRISPR/Cas9 and base editing, have reached clinical phase testing. Improvements in accuracy and efficiency have unlocked applications for a wider range of blood malignancies, with multiplexed editing incorporated to target HLA molecules, shared antigens and checkpoint pathways. Clinical trials will help establish safety profiles and determine the durability of responses as well as the role of consolidation with allogeneic transplantation.
Collapse
Affiliation(s)
- Waseem Qasim
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London, United Kingdom
| |
Collapse
|
7
|
Yip S, Wang N, Sugimura R. Give Them Vasculature and Immune Cells: How to Fill the Gap of Organoids. Cells Tissues Organs 2023; 212:369-382. [PMID: 36716724 PMCID: PMC10711768 DOI: 10.1159/000529431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Valid and relevant models are critical for research to have biological relevance or to proceed in the right path. As well-established two-dimensional cell cultures lack niches and cues and rodent models differ in species, three-dimensional organoids emerged as a powerful platform for research. Cultured in vitro from stem cells, organoids are heterogeneous in cells and closely resemble the in vivo settings. Organoids also recapitulate the unique human features if cultured from a human source and are subjected to genetic modification. However, one type of organoid possesses only a limited selection of cells. In particular, the absence of vasculature and immune cells restricts the organoids from nutrition, cues, or critical interactions, undermining the validity of organoids as physiological or pathological models. To fill the current gap, there is an urgent need to provide organoids with vasculature and immune cells. In this paper, we review the methods to generate physiological and pathological organoid models and summarize ways to vascularize or immunize them. Our discussion continues with some advantages and disadvantages of each method and some emerging solutions to current problems.
Collapse
Affiliation(s)
- Sophronia Yip
- Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Centre for Translational Stem Cell Biology, Hong Kong, Hong Kong SAR
| | - Nan Wang
- Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
8
|
Meissner TB, Schulze HS, Dale SM. Immune Editing: Overcoming Immune Barriers in Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2022; 8:206-218. [PMID: 36406259 PMCID: PMC9643905 DOI: 10.1007/s40778-022-00221-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/10/2022]
Abstract
Purpose of Review Human pluripotent stem cells have the potential to revolutionize the treatment of inborn and degenerative diseases, including aging and autoimmunity. A major barrier to their wider adoption in cell therapies is immune rejection. Genome editing allows for tinkering of the human genome in stem and progenitor cells and raises the prospect for overcoming the immune barriers to transplantation. Recent Findings Initial attempts have focused primarily on the major histocompatibility barrier that is formed by the human leukocyte antigens (HLA). More recently, immune checkpoint inhibitors, such as PD-L1, CD47, or HLA-G, are being explored both, in the presence or absence of HLA, to mitigate immune rejection by the various cellular components of the immune system. Summary In this review, we discuss progress in surmounting immune barriers to cell transplantation, with a particular focus on genetic engineering of human pluripotent stem and progenitor cells and the therapeutic cell types derived from them.
Collapse
Affiliation(s)
- Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA USA
- Department of Surgery, Harvard Medical School, Boston, MA USA
| | - Henrike S. Schulze
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Stanley M. Dale
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|