1
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2025; 36:235-248. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
2
|
Requena D, Medico JA, Soto-Ugaldi LF, Shirani M, Saltsman JA, Torbenson MS, Coffino P, Simon SM. Liver cancer multiomics reveals diverse protein kinase A disruptions convergently produce fibrolamellar hepatocellular carcinoma. Nat Commun 2024; 15:10887. [PMID: 39738196 DOI: 10.1038/s41467-024-55238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jack A Medico
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Qureshi AA, Wehrle CJ, Ferreira-Gonzalez S, Jiao C, Hong H, Dadgar N, Arpi-Palacios J, Phong YP, Kim J, Sun K, Hashimoto K, Kwon DCH, Miller C, Leipzig N, Ma WW, Melenhorst J, Aucejo F, Schlegel A. Tumor organoids for primary liver cancers: A systematic review of current applications in diagnostics, disease modeling, and drug screening. JHEP Rep 2024; 6:101164. [PMID: 39583095 PMCID: PMC11584567 DOI: 10.1016/j.jhepr.2024.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Liver cancer-related deaths are projected to exceed one million annually by 2030. Existing therapies have significant limitations, including severe side effects and inconsistent efficacy. Innovative therapeutic approaches to address primary liver cancer (PLC) have led to the ongoing development of tumor-derived organoids. These are sophisticated three-dimensional structures capable of mimicking native tissue architecture and function in vitro, improving our ability to model in vivo homeostasis and disease. Methods This systematic review consolidates known literature on human and mouse liver organoids across all PLC subtypes, emphasizing diagnostic precision, disease modeling, and drug screening capabilities. Results Across all 39 included studies, organoids were most frequently patient-derived, closely followed by cancer cell line-derived. The literature concentrated on hepatocellular carcinoma and intrahepatic cholangiocarcinoma, while exploration of other subtypes was limited. These studies demonstrate a valuable role for PLC organoid cultures in biomarker discovery, disease modeling, and therapeutic exploration. Conclusions Encouraging advances such as organoid-on-a-chip and co-culturing systems hold promise for advancing treatment regimens for PLC. Standardizing in vitro protocols is crucial to integrate research breakthroughs into practical treatment strategies for PLC. Impact and implications This study provides an overview of the current understanding of tumor-derived organoids in primary liver cancers, emphasizing their potential in diagnostics, disease modeling, and drug screening. The scientific foundation rests on the organoids' ability to replicate the tumor microenvironment and genetic landscape, opening new avenues for personalized therapies. These insights are crucial for both researchers and clinicians, as patient-derived organoids can help identify biomarkers and therapeutic targets. Physicians and policymakers can harness these advances to drive progress in precision medicine, while recognizing the challenges involved in standardizing organoid models for clinical implementation.
Collapse
Affiliation(s)
- Ayesha A. Qureshi
- Nationwide Children's Hospital, Abigail Wexner Research Institute, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | | | - Sofia Ferreira-Gonzalez
- CIR Centre for Inflammation Research, University of Edinburgh, 5 Little France Drive Edinburgh, EH16 4UU, UK
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hanna Hong
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Neda Dadgar
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
- Translational Hematology & Oncology Research, Cleveland Clinic, Enterprise Cancer Institute, Cleveland, OH, USA
| | - Jorge Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Yee Phoon Phong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Jaekeun Kim
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Nic Leipzig
- The University of Akron, Department of Chemical, Biomolecular, and Corrosion Engineering, Akron, OH, USA
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Jos Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | | | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Song J, Lu M, He Z, Zhang W. Models of fibrolamellar carcinomas, tools for evaluation of a new era of treatments. Front Immunol 2024; 15:1459942. [PMID: 39582856 PMCID: PMC11582006 DOI: 10.3389/fimmu.2024.1459942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare but fatal cancer that occurs primarily in young people. There are currently no known effective treatments, although several promising treatments appear to be in development. Genetic studies have confirmed that almost all FLC tumors have a fusion protein marker (DNAJB1-PRKACA) encoded by a fusion gene (DNAJB1-PRKACA); It is currently accepted as a diagnostic criterion for FLCs. Several research teams have established patient-derived xenograft (PDX) FLC models using immunocompromised animals as hosts and patient tissue samples (tumors or ascites) as primary sources for PDX-derived organoids. These FLC organoids are composed of FLC epithelia, endothelial progenitor cells, and stellate cells. CRISPR/Cas9 was used as a gene editing technique to modify mature hepatocytes to obtain ex vivo FLC-like cells expressing the fusion gene and/or other mutated genes associated with FLCs. Although these models simulate some but not all FLC features. Drug screening using these models has not proven effective in identifying clinically useful treatments. Genetic studies comparing FLCs to normal maturing endodermal cell lineages have shown that FLCs share genetic signatures not with hepatocytes, but with subpopulations of biliary tree stem cells (BTSCs), hepato/pancreatic stem/progenitor cells that consistently reside in peribiliary glands (PBGs) located in the biliary tree and are sources of stem cells for the formation and postnatal regeneration of the liver and pancreas. Therefore, it is expected that models of BTSCs, instead of hepatocytes may prove more useful. In this review, we summarize the status of the various FLC models and their features, applications, and limitations. They provide opportunities to understand the cause and characteristics of this deadly disease and are models from which effective treatments can be identified.
Collapse
Affiliation(s)
- Jinjia Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Mengqi Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
5
|
Airola C, Pallozzi M, Cesari E, Cerrito L, Stella L, Sette C, Giuliante F, Gasbarrini A, Ponziani FR. Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research. Cells 2024; 13:1726. [PMID: 39451244 PMCID: PMC11505656 DOI: 10.3390/cells13201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Claudio Sette
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Felice Giuliante
- Department of Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Hu X, Wei J, Liu P, Zheng Q, Zhang Y, Zhang Q, Yao J, Ni J. Organoid as a promising tool for primary liver cancer research: a comprehensive review. Cell Biosci 2024; 14:107. [PMID: 39192365 DOI: 10.1186/s13578-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
Collapse
Affiliation(s)
- Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jiayun Wei
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Pinyan Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qiuxia Zheng
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yue Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qichen Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
7
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
8
|
Hu Y, Geng Q, Wang L, Wang Y, Huang C, Fan Z, Kong D. Research progress and application of liver organoids for disease modeling and regenerative therapy. J Mol Med (Berl) 2024; 102:859-874. [PMID: 38802517 PMCID: PMC11213763 DOI: 10.1007/s00109-024-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The liver is a major metabolic organ of the human body and has a high incidence of diseases. In recent years, the annual incidence of liver disease has increased, seriously endangering human life and health. The study of the occurrence and development mechanism of liver diseases, discovery of new therapeutic targets, and establishment of new methods of medical treatment are major issues related to the national economy and people's livelihood. The development of stable and effective research models is expected to provide new insights into the pathogenesis of liver diseases and the search for more effective treatment options. Organoid technology is a new in vitro culture system, and organoids constructed by human cells can simulate the morphological structure, gene expression, and glucose and lipid metabolism of organs in vivo, providing a new model for related research on liver diseases. This paper reviews the latest research progress on liver organoids from the establishment of cell sources and application of liver organoids and discusses their application potential in the field of liver disease research.
Collapse
Affiliation(s)
- Yang Hu
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Qiao Geng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Lu Wang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Yi Wang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Chuyue Huang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Zhimin Fan
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China.
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
9
|
Gomez-Mariano G, Perez-Luz S, Ramos-Del Saz S, Matamala N, Hernandez-SanMiguel E, Fernandez-Prieto M, Gil-Martin S, Justo I, Marcacuzco A, Martinez-Delgado B. Acid Sphingomyelinase Deficiency Type B Patient-Derived Liver Organoids Reveals Altered Lysosomal Gene Expression and Lipid Homeostasis. Int J Mol Sci 2023; 24:12645. [PMID: 37628828 PMCID: PMC10454326 DOI: 10.3390/ijms241612645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) or Niemann-Pick disease type A (NPA), type B (NPB) and type A/B (NPA/B), is a rare lysosomal storage disease characterized by progressive accumulation of sphingomyelin (SM) in the liver, lungs, bone marrow and, in severe cases, neurons. A disease model was established by generating liver organoids from a NPB patient carrying the p.Arg610del variant in the SMPD1 gene. Liver organoids were characterized by transcriptomic and lipidomic analysis. We observed altered lipid homeostasis in the patient-derived organoids showing the predictable increase in sphingomyelin (SM), together with cholesterol esters (CE) and triacylglycerides (TAG), and a reduction in phosphatidylcholine (PC) and cardiolipins (CL). Analysis of lysosomal gene expression pointed to 24 downregulated genes, including SMPD1, and 26 upregulated genes that reflect the lysosomal stress typical of the disease. Altered genes revealed reduced expression of enzymes that could be involved in the accumulation in the hepatocytes of sphyngoglycolipids and glycoproteins, as well as upregulated genes coding for different glycosidases and cathepsins. Lipidic and transcriptome changes support the use of hepatic organoids as ideal models for ASMD investigation.
Collapse
Affiliation(s)
- Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Sara Perez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Esther Hernandez-SanMiguel
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Marta Fernandez-Prieto
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Sara Gil-Martin
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
- CIBER de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Beatriz Martinez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
- CIBER de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
10
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
11
|
Chen Y, Liu Y, Chen S, Zhang L, Rao J, Lu X, Ma Y. Liver organoids: a promising three-dimensional model for insights and innovations in tumor progression and precision medicine of liver cancer. Front Immunol 2023; 14:1180184. [PMID: 37334366 PMCID: PMC10272526 DOI: 10.3389/fimmu.2023.1180184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Primary liver cancer (PLC) is one type of cancer with high incidence rate and high mortality rate in the worldwide. Systemic therapy is the major treatment for PLC, including surgical resection, immunotherapy and targeted therapy. However, mainly due to the heterogeneity of tumors, responses to the above drug therapy differ from person to person, indicating the urgent needs for personalized treatment for PLC. Organoids are 3D models derived from adult liver tissues or pluripotent stem cells. Based on the ability to recapitulate the genetic and functional features of in vivo tissues, organoids have assisted biomedical research to make tremendous progress in understanding disease origin, progression and treatment strategies since their invention and application. In liver cancer research, liver organoids contribute greatly to reflecting the heterogeneity of liver cancer and restoring tumor microenvironment (TME) by co-organizing tumor vasculature and stromal components in vitro. Therefore, they provide a promising platform for further investigation into the biology of liver cancer, drug screening and precision medicine for PLC. In this review, we discuss the recent advances of liver organoids in liver cancer, in terms of generation methods, application in precision medicine and TME modeling.
Collapse
Affiliation(s)
- Yukun Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yujun Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Rao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Rüland L, Andreatta F, Massalini S, Chuva de Sousa Lopes S, Clevers H, Hendriks D, Artegiani B. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun 2023; 14:2377. [PMID: 37137901 PMCID: PMC10156813 DOI: 10.1038/s41467-023-37951-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Collapse
Affiliation(s)
- Laura Rüland
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Abstract
The fight against rare cancers faces myriad challenges, including missed or wrong diagnoses, lack of information and diagnostic tools, too few samples and too little funding. Yet many advances in cancer biology, such as the realization that there are tumour suppressor genes, have come from studying well-defined, albeit rare, cancers. Fibrolamellar hepatocellular carcinoma (FLC), a typically lethal liver cancer, mainly affects adolescents and young adults. FLC is both rare, 1 in 5 million, and problematic to diagnose. From the paucity of data, it was not known whether FLC was one cancer or a collection with similar phenotypes, or whether it was genetically inherited or the result of a somatic mutation. A personal journey through a decade of work reveals answers to these questions and a road map of steps and missteps in our fight against a rare cancer.
Collapse
|
14
|
Togo H, Terada K, Ujitsugu A, Hirose Y, Takeuchi H, Kusunoki M. Fabrication Scaffold with High Dimensional Control for Spheroids with Undifferentiated iPS Cell Properties. Cells 2023; 12:278. [PMID: 36672213 PMCID: PMC9857117 DOI: 10.3390/cells12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Spheroids are expected to aid the establishment of an in vitro-based cell culture system that can realistically reproduce cellular dynamics in vivo. We developed a fluoropolymer scaffold with an extracellular matrix (ECM) dot array and confirmed the possibility of mass-producing spheroids with uniform dimensions. Controlling the quality of ECM dots is important as it ensures spheroid uniformity, but issues such as pattern deviation and ECM drying persist in the conventional microstamping method. In this study, these problems were overcome via ECM dot printing using a resin mask with dot-patterned holes. For dot diameters of φ 300 μm, 400 μm, and 600 μm, the average spheroid diameters of human iPS cells (hiPSCs) were φ 260.8 μm, 292.4 μm, and 330.7 μm, respectively. The standard deviation when each average was normalized to 100 was 14.1%. A high throughput of 89.9% for colony formation rate to the number of dots and 89.3% for spheroid collection rate was achieved. The cells proliferated on ECM dots, and the colonies could be naturally detached from the scaffold without the use of enzymes, so there was almost no stimulation of the cells. Thus, the undifferentiated nature of hiPSCs was maintained until day 4. Therefore, this method is expected to be useful in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Hidetaka Togo
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Kento Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Akira Ujitsugu
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Yudai Hirose
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Masanobu Kusunoki
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|