1
|
De Beuckeleer S, Vanhooydonck A, Van Den Daele J, Van De Looverbosch T, Asselbergh B, Kim H, Campsteijn C, Ponsaerts P, Watts R, De Vos WH. An agarose fluidic chip for high-throughput in toto organoid imaging. LAB ON A CHIP 2024. [PMID: 39686700 DOI: 10.1039/d4lc00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Modern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput. The chip, cast from a custom-designed 3D-printed mold, is coupled to a mechanically controlled syringe pump for fast and precise sample positioning. We benchmarked this setup on a commercial digitally scanned light sheet microscope with cleared glioblastoma spheroids. Spheroids of varying sizes were positioned in the field of view with micrometer-level stability, achieving a throughput of 40 one-minute recordings per hour. We further showed that sample positioning could be automated through online feedback microscopy. The optical quality of the agarose chip outperformed FEP tubing, glass channels and PDMS casts for the clearing agents used, as demonstrated by image contrast profiles of spheroids stained with a fluorescent nuclear counterstain and further emphasized by the resolution of fine microglial ramifications within cerebral organoids. The retention of image quality throughout 500 μm-sized spheroids enabled comprehensive spatial mapping of live and dead cells based on their nuclear morphology. Finally, imaging a batch of LMNA knockout vs. wildtype astrocytoma spheroids revealed significant differences in their DNA damage response, underscoring the system's sensitivity and throughput. Overall, the fluidic chip design provides a cost-effective, accessible, and efficient solution for high-throughput organoid imaging.
Collapse
Affiliation(s)
- Sarah De Beuckeleer
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | - Andres Vanhooydonck
- Faculty of Design Sciences, Department of Product Development, University of Antwerp, Paardenmarkt 94, 2000 Antwerp, Belgium.
| | - Johanna Van Den Daele
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | - Tim Van De Looverbosch
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | - Bob Asselbergh
- VIB-UAntwerp Center for Molecular Neurology, VIB, Universiteitsplein 1, Antwerp, Belgium
| | - Hera Kim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Coen Campsteijn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Belgium
| | - Regan Watts
- Faculty of Design Sciences, Department of Product Development, University of Antwerp, Paardenmarkt 94, 2000 Antwerp, Belgium.
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
- Antwerp Centre for Advanced Microscopy, University of Antwerp, Belgium
- μNEURO Centre of Research Excellence, University of Antwerp, Belgium
| |
Collapse
|
2
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
3
|
Fujimori K, Yamanaka S, Shimada K, Matsui K, Kawagoe S, Kuroda T, Ikeda A, Inoue M, Kobayashi E, Yokoo T. Generation of human-pig chimeric renal organoids using iPSC technology. Commun Biol 2024; 7:1278. [PMID: 39375428 PMCID: PMC11458617 DOI: 10.1038/s42003-024-06986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024] Open
Abstract
Porcine organs and human induced pluripotent stem cell (iPSC)-derived organoids as alternative organs for human transplantation have garnered attention, but both face technical challenges. Interspecies chimeric organ production using human iPSCs shows promise in overcoming these challenges. Our group successfully generated chimeric renal organoids using human iPSC-derived nephron progenitor cells (NPCs) and fetal mouse kidneys. However, the current technology is limited to rodents. Therefore, this study focused on producing human-pig chimeric renal organoids, as pigs are the most promising species for xenotransplantation. Modification of existing culture systems enables continuous renal development in both species, resulting in the successful creation of human-pig chimeric renal organoids. Moreover, this method can be applied to generate humanized xenogeneic kidneys for future clinical applications. This study provides evidence that optimizing culture conditions enables the early-stage kidney development beyond species barriers, thus laying the foundation for accelerating research on humanized xenogeneic kidney fabrication for clinical purposes.
Collapse
Affiliation(s)
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shiho Kawagoe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Davies JA, Holland I, Gül H. Kidney organoids: steps towards better organization and function. Biochem Soc Trans 2024; 52:1861-1871. [PMID: 38934505 PMCID: PMC11668298 DOI: 10.1042/bst20231554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Kidney organoids - 3D representations of kidneys made either from pluripotent or tissue stem cells - have been available for well over a decade. Their application could confer notable benefits over longstanding in vivo approaches with the potential for clinically aligned human cells and reduced ethical burdens. They been used, at a proof-of-concept level, in development in disease modeling (including with patient-derived stem cells), and in screening drugs for efficacy/toxicity. They differ from real kidneys: they represent only foetal-stage tissue, in their simplest forms they lack organ-scale anatomical organization, they lack a properly arranged vascular system, and include non-renal cells. Cell specificity may be improved by better techniques for differentiation and/or sorting. Sequential assembly techniques that mimic the sequence of natural development, and localized sources of differentiation-inducing signals, improve organ-scale anatomy. Organotypic vascularization remains a challenge: capillaries are easy, but the large vessels that should serve them are absent from organoids and, even in cultured real kidneys, these large vessels do not survive without blood flow. Transplantation of organoids into hosts results in their being vascularized (though probably not organotypically) and in some renal function. It will be important to transplant more advanced organoids, with a urine exit, in the near future to assess function more stringently. Transplantation of human foetal kidneys, followed by nephrectomy of host kidneys, keeps rats alive for many weeks, raising hope that, if organoids can be produced even to the limited size and complexity of foetal kidneys, they may one day be useful in renal replacement.
Collapse
Affiliation(s)
- Jamie A. Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, U.K
| | - Ian Holland
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, U.K
| | - Huseyin Gül
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, U.K
| |
Collapse
|
5
|
Hammerhøj A, Chakravarti D, Sato T, Jensen KB, Nielsen OH. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024; 27:110118. [PMID: 38947526 PMCID: PMC11214415 DOI: 10.1016/j.isci.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.
Collapse
Affiliation(s)
- Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
6
|
Wang C, Abadpour S, Aizenshtadt A, Dalmao-Fernandez A, Høyem M, Wilhelmsen I, Stokowiec J, Olsen PA, Krauss S, Chera S, Ghila L, Ræder H, Scholz H. Cell identity dynamics and insight into insulin secretagogues when employing stem cell-derived islets for disease modeling. Front Bioeng Biotechnol 2024; 12:1392575. [PMID: 38933536 PMCID: PMC11199790 DOI: 10.3389/fbioe.2024.1392575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Stem cell-derived islets (SC-islets) are not only an unlimited source for cell-based therapy of type 1 diabetes but have also emerged as an attractive material for modeling diabetes and conducting screening for treatment options. Prior to SC-islets becoming the established standard for disease modeling and drug development, it is essential to understand their response to various nutrient sources in vitro. This study demonstrates an enhanced efficiency of pancreatic endocrine cell differentiation through the incorporation of WNT signaling inhibition following the definitive endoderm stage. We have identified a tri-hormonal cell population within SC-islets, which undergoes reduction concurrent with the emergence of elevated numbers of glucagon-positive cells during extended in vitro culture. Over a 6-week period of in vitro culture, the SC-islets consistently demonstrated robust insulin secretion in response to glucose stimulation. Moreover, they manifested diverse reactivity patterns when exposed to distinct nutrient sources and exhibited deviant glycolytic metabolic characteristics in comparison to human primary islets. Although the SC-islets demonstrated an aberrant glucose metabolism trafficking, the evaluation of a potential antidiabetic drug, pyruvate kinase agonist known as TEPP46, significantly improved in vitro insulin secretion of SC-islets. Overall, this study provided cell identity dynamics investigation of SC-islets during prolonged culturing in vitro, and insights into insulin secretagogues. Associated advantages and limitations were discussed when employing SC-islets for disease modeling.
Collapse
Affiliation(s)
- Chencheng Wang
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| | - Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| | | | - Andrea Dalmao-Fernandez
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Merete Høyem
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Merle M, Friedman L, Chureau C, Shoushtarizadeh A, Gregor T. Precise and scalable self-organization in mammalian pseudo-embryos. Nat Struct Mol Biol 2024; 31:896-902. [PMID: 38491138 DOI: 10.1038/s41594-024-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Gene expression is inherently noisy, posing a challenge to understanding how precise and reproducible patterns of gene expression emerge in mammals. Here we investigate this phenomenon using gastruloids, a three-dimensional in vitro model for early mammalian development. Our study reveals intrinsic reproducibility in the self-organization of gastruloids, encompassing growth dynamics and gene expression patterns. We observe a remarkable degree of control over gene expression along the main body axis, with pattern boundaries positioned with single-cell precision. Furthermore, as gastruloids grow, both their physical proportions and gene expression patterns scale proportionally with system size. Notably, these properties emerge spontaneously in self-organizing cell aggregates, distinct from many in vivo systems constrained by fixed boundary conditions. Our findings shed light on the intricacies of developmental precision, reproducibility and size scaling within a mammalian system, suggesting that these phenomena might constitute fundamental features of multicellularity.
Collapse
Affiliation(s)
- Mélody Merle
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Leah Friedman
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Corinne Chureau
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Armin Shoushtarizadeh
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France.
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Moon HR, Mun SJ, Kim TH, Kim H, Kang D, Kim S, Shin JH, Choi D, Ahn SJ, Son MJ. Guidelines for Manufacturing and Application of Organoids: Liver. Int J Stem Cells 2024; 17:120-129. [PMID: 38773747 PMCID: PMC11170117 DOI: 10.15283/ijsc24044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.
Collapse
Affiliation(s)
- Hye-Ran Moon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Tae Hun Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
- Organoid Standards Initiative
| | - Dukjin Kang
- Organoid Standards Initiative
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, Korea
| | - Suran Kim
- Organoid Standards Initiative
- CellArtgen Inc., Seoul, Korea
| | - Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Organoid Standards Initiative
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Organoid Standards Initiative
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
| |
Collapse
|
9
|
Matsumoto K, Namai F, Miyazaki A, Imamura Y, Fukuyama K, Ikeda-Ohtsubo W, Nishiyama K, Villena J, Miyazawa K, Kitazawa H. Development of an intestinal epithelial cell line and organoids derived from the same swine and characterization of their antiviral responses. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:342-351. [PMID: 39364127 PMCID: PMC11444855 DOI: 10.12938/bmfh.2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 10/05/2024]
Abstract
Intestinal homeostasis and integrity are important factors for maintaining host health. This study established intestinal epithelial cell lines and organoids from the same swine jejunal crypts to develop seamless swine intestinal in vitro evaluation systems. The study evaluated the proliferative capacity and tight junction formation of the epithelial cell line and characterized the cell differentiation potential of the intestinal organoids. The evaluation systems were subsequently exposed to the Toll-like receptor 3 (TLR3) agonist poly(I:C) to simulate viral infections and assess the antiviral responses. The results demonstrated no differences in the response to type I interferons. There were, however, significant differences in the expression of interferon-stimulated genes. This study collectively introduced a flexible evaluation system using cell lines and organoids and revealed notable differences in the expression of interferon-stimulated genes, highlighting the complexity of the immune responses in these in vitro systems and the importance of intestinal heterogeneity in assessing viral responses.
Collapse
Affiliation(s)
- Kaho Matsumoto
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Ayako Miyazaki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshiya Imamura
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Wakako Ikeda-Ohtsubo
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Julio Villena
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Kohtaro Miyazawa
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
10
|
Simons JN, van der Graaf R, van Delden JJ. Cardiac organoids do not warrant additional moral scrutiny. BMC Med Ethics 2024; 25:61. [PMID: 38773517 PMCID: PMC11106857 DOI: 10.1186/s12910-024-01064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024] Open
Abstract
Certain organoid subtypes are particularly sensitive. We explore whether moral intuitions about the heartbeat warrant unique moral consideration for newly advanced contracting cardiac organoids. Despite the heartbeat's moral significance in organ procurement and abortion discussions, we argue that this significance should not translate into moral implications for cardiac organoids.
Collapse
Affiliation(s)
- Jannieke N Simons
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Rieke van der Graaf
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes Jm van Delden
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Cioce M, Gatti V, Napolitano F, Giorgiano NM, Marra A, Portella G, Fiorelli A, Pentimalli F, Fazio VM. Mesothelioma-Associated Fibroblasts Modulate the Response of Mesothelioma Patient-Derived Organoids to Chemotherapy via Interleukin-6. Int J Mol Sci 2024; 25:5355. [PMID: 38791392 PMCID: PMC11121414 DOI: 10.3390/ijms25105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) remains an incurable disease. This is partly due to the lack of experimental models that fully recapitulate the complexity and heterogeneity of MPM, a major challenge for therapeutic management of the disease. In addition, the contribution of the MPM microenvironment is relevant for the adaptive response to therapy. We established mesothelioma patient-derived organoid (mPDO) cultures from MPM pleural effusions and tested their response to pemetrexed and cisplatin. We aimed to evaluate the contribution of mesothelioma-associated fibroblasts (MAFs) to the response to pemetrexed and cisplatin (P+C). Organoid cultures were obtained from eight MPM patients using specific growth media and conditions to expand pleural effusion-derived cells. Flow cytometry was used to verify the similarity of the organoid cultures to the original samples. MAFs were isolated and co-cultured with mPDOs, and the addition of MAFs reduced the sensitivity of mPDOs to P+C. Organoid formation and expression of cancer stem cell markers such as ABCG2, NANOG, and CD44 were altered by conditioned media from treated MAFs. We identified IL-6 as the major contributor to the attenuated response to chemotherapy. IL-6 secretion by MAFs is correlated with increased resistance of mPDOs to pemetrexed and cisplatin.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| | - Veronica Gatti
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 81025 Naples, Italy
| | - Noemi Maria Giorgiano
- Thoracic Surgery Unity, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 81025 Naples, Italy
| | - Alfonso Fiorelli
- Thoracic Surgery Unity, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University of Campus-Biomedico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
12
|
Wenzel TJ, Mousseau DD. Brain organoids engineered to give rise to glia and neural networks after 90 days in culture exhibit human-specific proteoforms. Front Cell Neurosci 2024; 18:1383688. [PMID: 38784709 PMCID: PMC11111902 DOI: 10.3389/fncel.2024.1383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Human brain organoids are emerging as translationally relevant models for the study of human brain health and disease. However, it remains to be shown whether human-specific protein processing is conserved in human brain organoids. Herein, we demonstrate that cell fate and composition of unguided brain organoids are dictated by culture conditions during embryoid body formation, and that culture conditions at this stage can be optimized to result in the presence of glia-associated proteins and neural network activity as early as three-months in vitro. Under these optimized conditions, unguided brain organoids generated from induced pluripotent stem cells (iPSCs) derived from male-female siblings are similar in growth rate, size, and total protein content, and exhibit minimal batch-to-batch variability in cell composition and metabolism. A comparison of neuronal, microglial, and macroglial (astrocyte and oligodendrocyte) markers reveals that profiles in these brain organoids are more similar to autopsied human cortical and cerebellar profiles than to those in mouse cortical samples, providing the first demonstration that human-specific protein processing is largely conserved in unguided brain organoids. Thus, our organoid protocol provides four major cell types that appear to process proteins in a manner very similar to the human brain, and they do so in half the time required by other protocols. This unique copy of the human brain and basic characteristics lay the foundation for future studies aiming to investigate human brain-specific protein patterning (e.g., isoforms, splice variants) as well as modulate glial and neuronal processes in an in situ-like environment.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
13
|
Han X, Cai C, Deng W, Shi Y, Li L, Wang C, Zhang J, Rong M, Liu J, Fang B, He H, Liu X, Deng C, He X, Cao X. Landscape of human organoids: Ideal model in clinics and research. Innovation (N Y) 2024; 5:100620. [PMID: 38706954 PMCID: PMC11066475 DOI: 10.1016/j.xinn.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
In the last decade, organoid research has entered a golden era, signifying a pivotal shift in the biomedical landscape. The year 2023 marked a milestone with the publication of thousands of papers in this arena, reflecting exponential growth. However, amid this burgeoning expansion, a comprehensive and accurate overview of the field has been conspicuously absent. Our review is intended to bridge this gap, providing a panoramic view of the rapidly evolving organoid landscape. We meticulously analyze the organoid field from eight distinctive vantage points, harnessing our rich experience in academic research, industrial application, and clinical practice. We present a deep exploration of the advances in organoid technology, underpinned by our long-standing involvement in this arena. Our narrative traverses the historical genesis of organoids and their transformative impact across various biomedical sectors, including oncology, toxicology, and drug development. We delve into the synergy between organoids and avant-garde technologies such as synthetic biology and single-cell omics and discuss their pivotal role in tailoring personalized medicine, enhancing high-throughput drug screening, and constructing physiologically pertinent disease models. Our comprehensive analysis and reflective discourse provide a deep dive into the existing landscape and emerging trends in organoid technology. We spotlight technological innovations, methodological evolution, and the broadening spectrum of applications, emphasizing the revolutionary influence of organoids in personalized medicine, oncology, drug discovery, and other fields. Looking ahead, we cautiously anticipate future developments in the field of organoid research, especially its potential implications for personalized patient care, new avenues of drug discovery, and clinical research. We trust that our comprehensive review will be an asset for researchers, clinicians, and patients with keen interest in personalized medical strategies. We offer a broad view of the present and prospective capabilities of organoid technology, encompassing a wide range of current and future applications. In summary, in this review we attempt a comprehensive exploration of the organoid field. We offer reflections, summaries, and projections that might be useful for current researchers and clinicians, and we hope to contribute to shaping the evolving trajectory of this dynamic and rapidly advancing field.
Collapse
Affiliation(s)
- Xinxin Han
- Organ Regeneration X Lab, Lisheng East China Institute of Biotechnology, Peking University, Jiangsu 226200, China
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chunhui Cai
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Wei Deng
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yanghua Shi
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Lanyang Li
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chen Wang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jian Zhang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Mingjie Rong
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jiping Liu
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Bangjiang Fang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
14
|
Mencattini A, Daprati E, Della-Morte D, Guadagni F, Sangiuolo F, Martinelli E. Assembloid learning: opportunities and challenges for personalized approaches to brain functioning in health and disease. Front Artif Intell 2024; 7:1385871. [PMID: 38708094 PMCID: PMC11066156 DOI: 10.3389/frai.2024.1385871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Affiliation(s)
- Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center of Advanced Study of Organ-on-Chip and Lab-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, Rome, Italy
| | - Elena Daprati
- Department of System Medicine and Centro di Biomedicina Spaziale (CBMS), University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Interdisciplinary Center of Advanced Study of Organ-on-Chip and Lab-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, Rome, Italy
- San Raffaele Rome University, Rome, Italy
| | - Fiorella Guadagni
- San Raffaele Rome University, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center of Advanced Study of Organ-on-Chip and Lab-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Gerli MFM, Calà G, Beesley MA, Sina B, Tullie L, Sun KY, Panariello F, Michielin F, Davidson JR, Russo FM, Jones BC, Lee DDH, Savvidis S, Xenakis T, Simcock IC, Straatman-Iwanowska AA, Hirst RA, David AL, O'Callaghan C, Olivo A, Eaton S, Loukogeorgakis SP, Cacchiarelli D, Deprest J, Li VSW, Giobbe GG, De Coppi P. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nat Med 2024; 30:875-887. [PMID: 38438734 PMCID: PMC10957479 DOI: 10.1038/s41591-024-02807-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 03/06/2024]
Abstract
Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Giuseppe Calà
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Max Arran Beesley
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Beatrice Sina
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Politecnico di Milano, Milan, Italy
| | - Lucinda Tullie
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Kylin Yunyan Sun
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Panariello
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Federica Michielin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Joseph R Davidson
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Francesca Maria Russo
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Brendan C Jones
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dani Do Hyang Lee
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Theodoros Xenakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ian C Simcock
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | | | - Robert A Hirst
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | | | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stavros P Loukogeorgakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium.
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Medical and Surgical Department of the Fetus, Newborn and Infant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
16
|
Hausmann A, Steenholdt C, Nielsen OH, Jensen KB. Immune cell-derived signals governing epithelial phenotypes in homeostasis and inflammation. Trends Mol Med 2024; 30:239-251. [PMID: 38320941 DOI: 10.1016/j.molmed.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
The intestinal epithelium fulfills important physiological functions and forms a physical barrier to the intestinal lumen. Barrier function is regulated by several pathways, and its impairment contributes to the pathogenesis of inflammatory bowel disease (IBD), a chronic inflammatory condition affecting more than seven million people worldwide. Current treatment options specifically target inflammatory mediators and have led to improvement of clinical outcomes; however, a significant proportion of patients experience treatment failure. Pro-repair effects of inflammatory mediators on the epithelium are emerging. In this review we summarize current knowledge on involved epithelial pathways, identify open questions, and put recent findings into clinical perspective, and pro-repair effects. A detailed understanding of epithelial pathways integrating mucosal stimuli in homeostasis and inflammation is crucial for the development of novel, more targeted therapies.
Collapse
Affiliation(s)
- Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Ole H Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
17
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
18
|
Lavekar SS, Patel MD, Montalvo-Parra MD, Krencik R. Asteroid impact: the potential of astrocytes to modulate human neural networks within organoids. Front Neurosci 2023; 17:1305921. [PMID: 38075269 PMCID: PMC10702564 DOI: 10.3389/fnins.2023.1305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024] Open
Abstract
Astrocytes are a vital cellular component of the central nervous system that impact neuronal function in both healthy and pathological states. This includes intercellular signals to neurons and non-neuronal cells during development, maturation, and aging that can modulate neural network formation, plasticity, and maintenance. Recently, human pluripotent stem cell-derived neural aggregate cultures, known as neurospheres or organoids, have emerged as improved experimental platforms for basic and pre-clinical neuroscience compared to traditional approaches. Here, we summarize the potential capability of using organoids to further understand the mechanistic role of astrocytes upon neural networks, including the production of extracellular matrix components and reactive signaling cues. Additionally, we discuss the application of organoid models to investigate the astrocyte-dependent aspects of neuropathological diseases and to test astrocyte-inspired technologies. We examine the shortcomings of organoid-based experimental platforms and plausible improvements made possible by cutting-edge neuroengineering technologies. These advancements are expected to enable the development of improved diagnostic strategies and high-throughput translational applications regarding neuroregeneration.
Collapse
Affiliation(s)
| | | | | | - R. Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
19
|
Setting standards for stem cells. Nat Methods 2023; 20:1267. [PMID: 37679521 DOI: 10.1038/s41592-023-02016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
|
20
|
Maimets M. Help! I need a WNT antibody. Help! Not just any antibody. Cell Chem Biol 2023; 30:857-860. [PMID: 37595548 DOI: 10.1016/j.chembiol.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
The emergence of antibody based surrogate WNT molecules has revolutionized research exploiting organoid cultures. In this issue of Cell Chemical Biology, Post et al.1 present a refined collection of WNT mimetics with unprecedented WNT/β-catenin pathway activating characteristics. These mimetics hold significant promise for future therapeutic advancements.
Collapse
Affiliation(s)
- Martti Maimets
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
21
|
Srivastava V, Hu JL, Garbe JC, Veytsman B, Shalabi SF, Yllanes D, Thomson M, LaBarge MA, Huber G, Gartner ZJ. Configurational entropy is an intrinsic driver of tissue structural heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.546933. [PMID: 37425903 PMCID: PMC10327153 DOI: 10.1101/2023.07.01.546933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissues comprise ordered arrangements of cells that can be surprisingly disordered in their details. How the properties of single cells and their microenvironment contribute to the balance between order and disorder at the tissue-scale remains poorly understood. Here, we address this question using the self-organization of human mammary organoids as a model. We find that organoids behave like a dynamic structural ensemble at the steady state. We apply a maximum entropy formalism to derive the ensemble distribution from three measurable parameters - the degeneracy of structural states, interfacial energy, and tissue activity (the energy associated with positional fluctuations). We link these parameters with the molecular and microenvironmental factors that control them to precisely engineer the ensemble across multiple conditions. Our analysis reveals that the entropy associated with structural degeneracy sets a theoretical limit to tissue order and provides new insight for tissue engineering, development, and our understanding of disease progression.
Collapse
Affiliation(s)
- Vasudha Srivastava
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L. Hu
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - James C. Garbe
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Boris Veytsman
- Chan Zuckerberg Initiative, Redwood City, CA 94963, USA
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | | | - David Yllanes
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Instituto de Biocomputaciòn y Fìsica de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark A. LaBarge
- Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Greg Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Zev J. Gartner
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| |
Collapse
|