1
|
Li SW, Zhao YH, Gao WK, Zhang LH, Yu HY, Wu HH. Steroidal constituents from Solanum nigrum. Fitoterapia 2023; 169:105603. [PMID: 37421992 DOI: 10.1016/j.fitote.2023.105603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Three previously undescribed steroidal constituents including two sterols (1-2) and one pregnane-type steroidal glycoside (6), along with nineteen known ones (3-5, 7-22), were isolated from the 80% alcohol extraction of Solanum nigrum L. Their structures and the absolute configurations were established by analysis of the extensive spectroscopic data (1H/13 NMR, 1H1H COSY, HSQC, HMBC, and NOESY), and/or by comparisons of the experimental electronic circular dichroism (ECD) spectra with those calculated ones by TDDFT method. Further, a MTT assay was applied to demonstrate that compounds 1-4, 6-12, 18, and 22 exhibited significant cytotoxic activities against SW480 cells, and compounds 1-4, 6-14, and 16-22 showed significant cytotoxic activities against Hep3B cells.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yu-Heng Zhao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Wen-Ke Gao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Li-Hua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Hai-Yang Yu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Hong-Hua Wu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China.
| |
Collapse
|
2
|
Structure, Bioactivity and Analytical Methods for the Determination of Yucca Saponins. Molecules 2021; 26:molecules26175251. [PMID: 34500685 PMCID: PMC8433717 DOI: 10.3390/molecules26175251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Yucca is one of the main sources of steroidal saponins, hence different extracts are commercialized for use as surfactant additives by beverage, animal feed, cosmetics or agricultural products. For a deeper understanding of the potential of the saponins that can be found in this genus, an exhaustive review of the structural characteristics, bioactivities and analytical methods that can be used with these compounds has been carried out, since there are no recent reviews on the matter. Thus, a total of 108 saponins from eight species of the genus Yucca have been described. Out of these, the bioactivity of 68 saponins derived from the isolation of Yucca or other genera has been evaluated. Regarding the evaluation and quality control of the saponins from this genus LC-MS technique is the most often used. Nevertheless, the development of methods for their routine analysis in commercial preparations are needed. Moreover, most of the studies found in the literature have been carried out on Y. schidigera extract, since is the most often used for commercial purposes. Only eight of the 50 species that belong to this genus have been studied, which clearly indicates that the identification of saponins present in Yucca genus is still an unresolved question.
Collapse
|
3
|
Silva HAMF, Sá JLF, Siqueira WND, Lima MDV, Martins MCB, Aires ADL, Albuquerque MCPDA, Falcão EPDS, Buril MDLL, Pereira EC, Melo AMMDA, Silva NHD. Toxicological effects of Ramalina aspera (lichen) on Biomphalaria glabrata snails and Schistosoma mansoni cercariae. Acta Trop 2019; 196:172-179. [PMID: 31082366 DOI: 10.1016/j.actatropica.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023]
Abstract
In this study, the molluscicidal activities against Biomphalaria glabrata and cercaricidal activities against Schistosoma mansoni of the ether extract of Ramalina aspera were evaluated. Additionally, toxicity parameters were evaluated at sublethal doses in terms of the influence of the extract on the fertility and fecundity of snails, as well as morphological alterations and quantification of their immunological cells. A test with Artemia salina was also carried out, in order to verify the environmental toxicity of the compound. The ether extract of R. aspera, in which divaricatic acid was identified as the major compound, demonstrated molluscicidal activity at low concentrations against both embryos (LC90 of 22.78, 24.23, 16.63 and 16.03 μg mL-1 for the gastrula, blastula, trochophore and veliger, respectively) and against adult snails (LC90 of 8.66 μg mL-1), after 24 h of exposure. At the sublethal doses, it was possible to observe a decrease in fecundity and quantitative and morphological changes in the defense cells of the exposed snails. In addition, the extract of R. aspera showed a cercaricidal effect on S. mansoni from the concentration of 5.0 μg mL-1, while showing low toxicity to Artemia salina. The ether extract of R. aspera demonstrated effective molluscicidal activity on embryos and adult snails of the species B. glabrata, cercariae of S. mansoni, and presenting low toxicity on Artemia salina. In this way, it could be considered a promising compound in the development of future molluscicidal and cercaricidal agents, thus helping to combat schistosomiasis.
Collapse
|
4
|
Upadhyay S, Jeena GS, Shukla RK. Recent advances in steroidal saponins biosynthesis and in vitro production. PLANTA 2018; 248:519-544. [PMID: 29748819 DOI: 10.1007/s00425-018-2911-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Steroidal saponins exhibited numerous pharmacological activities due to the modification of their backbone by different cytochrome P450s (P450) and UDP glycosyltransferases (UGTs). Plant-derived steroidal saponins are not sufficient for utilizing them for commercial purpose so in vitro production of saponin by tissue culture, root culture, embryo culture, etc, is necessary for its large-scale production. Saponin glycosides are the important class of plant secondary metabolites, which consists of either steroidal or terpenoidal backbone. Due to the existence of a wide range of medicinal properties, saponin glycosides are pharmacologically very important. This review is focused on important medicinal properties of steroidal saponin, its occurrence, and biosynthesis. In addition to this, some recently identified plants containing steroidal saponins in different parts were summarized. The high throughput transcriptome sequencing approach elaborates our understanding related to the secondary metabolic pathway and its regulation even in the absence of adequate genomic information of non-model plants. The aim of this review is to encapsulate the information related to applications of steroidal saponin and its biosynthetic enzymes specially P450s and UGTs that are involved at later stage modifications of saponin backbone. Lastly, we discussed the in vitro production of steroidal saponin as the plant-based production of saponin is time-consuming and yield a limited amount of saponins. A large amount of plant material has been used to increase the production of steroidal saponin by employing in vitro culture technique, which has received a lot of attention in past two decades and provides a way to conserve medicinal plants as well as to escape them for being endangered.
Collapse
Affiliation(s)
- Swati Upadhyay
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Gajendra Singh Jeena
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
5
|
Molluscicidal activity and mechanism of toxicity of a novel salicylanilide ester derivative against Biomphalaria species. Parasit Vectors 2017; 10:383. [PMID: 28793917 PMCID: PMC5550999 DOI: 10.1186/s13071-017-2313-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Schistosomiasis mansoni is one of the most important, but often neglected, tropical diseases transmitted by snails of the genus Biomphalaria. Control of the intermediate host snail plays a crucial role in preventing the spread of schistosomiasis. However, there is only one molluscicide, niclosamide, recommended by the World Health Organization. Niclosamide has been used for several decades but is toxic to non-target organisms. Therefore, it is necessary to optimize the scaffold of niclosamide and develop novel molluscicides with enhanced potency and decreased toxicity to non-target organisms. METHODS In this study, a candidate compound was analyzed by nuclear magnetic resonance and mass spectrometry. The molluscicidal potential against Biomphalaria species and cercaricidal potential against S. mansoni were evaluated using the immersion method. Furthermore, the preliminary mechanism was studied through cellular enzyme tests and electron microscopy. RESULTS 5-chloro-2-[(2-chloro-4-nitrophenyl)carbamoyl]phenyl-4-methoxybenzoate (salicylanilidate), a novel salicylanilide ester derivative, was derived from niclosamide. The 50% lethal concentration to B. glabrata, B. straminea and B. pfeifferi was 0.261 mg/l, 0.172 mg/l and 0.241 mg/l, respectively. The effective dose required to completely kill S. mansoni cercariae was 0.625 mg/l for salicylanilidate and 0.125 mg/l for niclosamide. However, salicylanilidate was approximately 100-fold less toxic to the fish Danio rerio than niclosamide. Furthermore, salicylanilidate reduced the enzymatic activities of nitric oxide synthase (NOS), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE) in the snail, demonstrating that it could affect neurohypophysis transmission and energy metabolism. Severe swelling in the tentacle and deformation of cilia in the tentacle and mantle were observed through scanning electron microscopy. The results of transmission electron microscopy showed that salicylanilidate could damage critical organelles in hepatopancreas tissues, including degeneration of the endoplasmic reticulum and vacuolization in mitochondria. In addition, transcriptional levels of superoxide dismutase (SOD), acid phosphatase (ACP) and NOS in the hepatopancreas were significantly downregulated as shown by real-time quantitative polymerase chain reaction (RT-PCR). These results indicated that the hepatopancreas is a primary target organ of salicylanilidate. CONCLUSIONS Salicylanilidate not only had deleterious effects on Biomphalaria species and S. mansoni cercariae but also showed very low toxicity to D. rerio, suggesting that it has broad potential applications.
Collapse
|
6
|
Yang C, Zhang M, Lei B, Gong G, Yue G, Chang X, Sun X, Tian Y, Chen H. Active saponins from root of Pueraria peduncularis (Grah. ex Benth.) Benth. and their molluscicidal effects on Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2017; 73:1143-1147. [PMID: 27608163 DOI: 10.1002/ps.4432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Pueraria peduncularis (Grah. ex Benth.) Benth., which belongs to the Leguminosae family, exhibits resistance to many crop pests in agricultural production. Pomacea canaliculata is an important invasive snail in rice fields and causes severe yield losses. To evaluate the toxicity of P. peduncularis to P. canaliculata, in this study the molluscicidal activity of root extracts of P. peduncularis was tested against P. canaliculata; the active compounds were isolated, and the structures of these compounds were analysed using nuclear magnetic resonance (NMR) analysis and mass spectral analysis. RESULTS Our results showed that the molluscicidal activity of the root crude extract differed between P. canaliculata with different shell diameters after treatment for 72 h. The median lethal concentration (LC50 ) was 5.511 mg L-1 against snails of 1.5 ± 0.2 cm diameter and 12.383 mg L-1 against snails of 2.5 ± 0.2 cm diameter. Furthermore, two active ingredients isolated from root methanol extracts were identified as pedunsaponin A and pedunsaponin C. Both pedunsaponin A and pedunsaponin C showed strong molluscicidal activities, with LC50 values of 3.893 and 4.252 mg L-1 , respectively, against snails with shell diameters of 1.5 ± 0.2 cm after treatment for 72 h. CONCLUSION Pueraria peduncularis extracts exhibit high molluscicidal activity and have great potential value for exploring a molluscicide to control Pomacea canaliculata. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- ChunPing Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Lei
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - GuoShu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - GuiZhou Yue
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - XiaoLi Chang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - XiaoFang Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - HuaBao Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Rocha-Filho CAA, Albuquerque LP, Silva LRS, Silva PCB, Coelho LCBB, Navarro DMAF, Albuquerque MCPA, Melo AMMA, Napoleão TH, Pontual EV, Paiva PMG. Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina. CHEMOSPHERE 2015; 132:188-192. [PMID: 25867917 DOI: 10.1016/j.chemosphere.2015.03.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
This study reports the effect of an aqueous extract from Moringa oleifera Lam. flowers on Biomphalaria glabrata embryos and adults and on Schistosoma mansoni adult worms. The extract contains tannins, saponins, flavones, flavonols, xanthones, and trypsin inhibitor activity. The toxicity of the extract on Artemia salina larvae was also investigated to determine the safety of its use for schistosomiasis control. After incubation for 24h, the flower extract significantly (p<0.05) delayed the development of B. glabrata embryos and promoted mortality of adult snails (LC50: 2.37±0.5mgmL(-1)). Furthermore, treatment with the extract disrupted the development of embryos generated by snails, with most of them remaining in the blastula stage while control embryos were already in the gastrula stage. Flower extract killed A. salina larvae with a LC50 value (0.2±0.015mgmL(-1)) lower than that determined for snails. A small reduction (17%) in molluscicidal activity was detected when flower extract (2.37mgmL(-1)) was exposed to tropical environmental conditions (UVI index ranging from 1 to 14, temperature from 25 to 30°C, and 65% relative humidity). Toxicity to A. salina was also reduced (LC50 value of 0.28±0.01mgmL(-1)). In conclusion, M. oleifera flower extract had deleterious effects on B. glabrata adults and embryos. However, unrestricted use to control schistosomiasis should be avoided due to the toxicity of this extract on A. salina.
Collapse
Affiliation(s)
| | - Lidiane P Albuquerque
- Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Luanna R S Silva
- Departamento de Biofísica e Radiobiologia-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Patrícia C B Silva
- Departamento de Química Fundamental-CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Daniela M A F Navarro
- Departamento de Química Fundamental-CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Monica C P A Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ana Maria M A Melo
- Departamento de Biofísica e Radiobiologia-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Emmanuel V Pontual
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica-CCB, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
8
|
Duval D, Galinier R, Mouahid G, Toulza E, Allienne JF, Portela J, Calvayrac C, Rognon A, Arancibia N, Mitta G, Théron A, Gourbal B. A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control? PLoS Negl Trop Dis 2015; 9:e0003489. [PMID: 25719489 PMCID: PMC4342248 DOI: 10.1371/journal.pntd.0003489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. METHODOLOGY/PRINCIPAL FINDINGS In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. CONCLUSIONS/SIGNIFICANCE This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field.
Collapse
Affiliation(s)
- David Duval
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
- * E-mail:
| | - Richard Galinier
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Gabriel Mouahid
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Jean François Allienne
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Julien Portela
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Christophe Calvayrac
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Laboratoire de Chimie des Biomolécules et de l’Environnement (LCBE, EA 4215), Perpignan, France
| | - Anne Rognon
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Nathalie Arancibia
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Guillaume Mitta
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - André Théron
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Benjamin Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
9
|
Eskander J, Sakka OK, Harakat D, Lavaud C. Steroidal saponins from the leaves of Yucca de-smetiana and their in vitro antitumor activity: structure activity relationships through a molecular modeling approach. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0497-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|