1
|
Fiet J, Bachelot G, Sow C, Farabos D, Helin N, Eguether T, Dufourg MN, Bellanne-Chantelot C, Ribaut B, Bachelot A, Young J, Houang M, Lamazière A. Plasma 21-deoxycortisone: a sensitive additive tool in 21-hydroxylase deficiency in newborns. Eur J Endocrinol 2024; 191:204-210. [PMID: 39137138 DOI: 10.1093/ejendo/lvae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE, DESIGN, AND METHODS Although 17-hydroxyprogesterone (17OHP) has historically been the steroid assayed in the diagnosis of congenital adrenal 21-hydroxylase deficiency (CAH-21D), its C11-hydroxylated metabolite, 21-deoxycortisol (21DF), which is strictly of adrenal origin, is assayed in parallel in this pathology. This steroid (21DF) is oxidized by 11beta-hydroxysteroid dehydrogenase type 2 into 21-deoxycortisone (21DE). In the context of CAH-21D confirmation testing, confounding factors (such as intensive care unit admission, stress, prematurity, early sampling, and variations of sex development) can interfere with the interpretation of the gold-standard biomarkers (17OHP and 21DF). Since its tissue concentrations are especially high in the placenta, we hypothesized that 21DE quantification in the neonatal periods could be an interesting biomarker in addition to 17OHP and 21DF. To verify this hypothesis, we developed a new mass spectrometry-based assay for 21DE in serum and applied it to newborns screened for CAH-21D. RESULTS In newborns with CAH-21D, the mean serum levels of 21DE reached 17.56 ng/mL (ranging from 8.58 ng/mL to 23.20 ng/mL), and the mean 21DE:21DF ratio was 4.99. In contrast, in newborns without CAH-21D, the 21DE serum levels were low and not statistically different from the analytical 21DE limit of quantification (0.01 ng/mL). CONCLUSION Basal serum 21DE appears to be a novel sensitive and specific biomarker of CAH-21D in newborns.
Collapse
Affiliation(s)
- Jean Fiet
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Guillaume Bachelot
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, 75020 Paris, France
| | - Coumba Sow
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Dominique Farabos
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Nicolas Helin
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Thibaut Eguether
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
| | - Marie-Noelle Dufourg
- Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, 26 Av Dr Netter, Paris 75012, France
| | | | - Bettina Ribaut
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Anne Bachelot
- Sorbonne Université, Service d'endocrinologie et médecine de la reproduction, IE3M, Hôpital Pitié-Salpêtrière, AP-HP, F-75013 Paris, France
| | - Jacques Young
- University Paris-Saclay, Paris-Sud Medical School, F-91405 Orsay, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, F-94275 Le Kremlin-Bicêtre, France
- INSERM UMR-S 1185, Paris-Saclay University, Le Kremlin Bicêtre F-94276, France
| | - Muriel Houang
- Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, 26 Av Dr Netter, Paris 75012, France
| | - Antonin Lamazière
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
| |
Collapse
|
2
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
du Toit T, Swart AC. Turning the spotlight on the C11-oxy androgens in human fetal development. J Steroid Biochem Mol Biol 2021; 212:105946. [PMID: 34171490 DOI: 10.1016/j.jsbmb.2021.105946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
Research into the biosynthesis of C11-oxy C19 steroids during human fetal development, specifically fetal adrenal development and during the critical period of sex differentiation, is currently lacking. Cortisol, which possesses a C11-hydroxyl moiety has, however, been firmly established in this context. Compelling questions are whether the C11-oxy C19 steroids (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione and 11-ketotestosterone [11KT]) and the C11-oxy C21 steroids (11β-hydroxyprogesterone and 11-ketoprogesterone) are biosynthesised during gestation, and whether these hormones circulate between the placenta and the developing fetus, and between the placenta and the mother. This review will consider the role of cortisol, 11KT and 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) in determining the sex of teleost fish, while these hormones and 11βHSD2 will also be discussed with regards to murine mammals. The focus of the review will shift to highlight the potential role of C11-oxy steroids in human fetal development based on the timely expression of steroidogenic enzymes in the adrenal, testes and ovary, as well as in the placenta; summarising reported evidence of C11-oxy steroids in neonatal life.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
4
|
Junker J, Kamp F, Winkler E, Steiner H, Bracher F, Müller C. Effective sample preparation procedure for the analysis of free neutral steroids, free steroid acids and sterol sulfates in different tissues by GC-MS. J Steroid Biochem Mol Biol 2021; 211:105880. [PMID: 33757894 DOI: 10.1016/j.jsbmb.2021.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile. We developed and validated a method that allows the analysis of free neutral steroids, including intermediates of cholesterol biosynthesis, free oxysterols, C19 and C21 steroids, free steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and report the endogenous concentrations of 29 physiological steroids.
Collapse
Affiliation(s)
- Julia Junker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Edith Winkler
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany.
| |
Collapse
|
5
|
Barnard L, du Toit T, Swart AC. Back where it belongs: 11β-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol Cell Endocrinol 2021; 525:111189. [PMID: 33539964 DOI: 10.1016/j.mce.2021.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Adrenal steroidogenesis has, for decades, been depicted as three biosynthesis pathways -the mineralocorticoid, glucocorticoid and androgen pathways with aldosterone, cortisol and androstenedione as the respective end products. 11β-hydroxyandrostenedione was not included as an adrenal steroid despite the adrenal output of this steroid being twice that of androstenedione. While it is the end of the line for aldosterone and cortisol, as it is in these forms that they exhibit their most potent receptor activities prior to inactivation and conjugation, 11β-hydroxyandrostenedione is another matter entirely. The steroid, which is weakly androgenic, has its own designated pathway yielding 11-ketoandrostenedione, 11β-hydroxytestosterone and the potent androgens, 11-ketotestosterone and 11-ketodihydrotestosterone, primarily in the periphery. Over the last decade, these C11-oxy C19 steroids have once again come to the fore with the rising number of studies contradicting the generally accepted notion that testosterone and it's 5α-reduced product, dihydrotestosterone, are the principal potent androgens in humans. These C11-oxy androgens have been shown to contribute to the androgen milieu in adrenal disorders associated with androgen excess and in androgen dependant disease progression. In this review, we will highlight these overlooked C11-oxy C19 steroids as well as the C11-oxy C21 steroids and their contribution to congenital adrenal hyperplasia, polycystic ovarian syndrome and prostate cancer. The focus is on new findings over the past decade which are slowly but surely reshaping our current outlook on human sex steroid biology.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
Hill M, Hána V, Velíková M, Pařízek A, Kolátorová L, Vítků J, Škodová T, Šimková M, Šimják P, Kancheva R, Koucký M, Kokrdová Z, Adamcová K, Černý A, Hájek Z, Dušková M, Bulant J, Stárka L. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol Res 2019; 68:179-207. [PMID: 31037947 DOI: 10.33549/physiolres.934124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Steroid profiling helps various pathologies to be rapidly diagnosed. Results from analyses investigating steroidogenic pathways may be used as a tool for uncovering pathology causations and proposals of new therapeutic approaches. The purpose of this study was to address still underutilized application of the advanced GC-MS/MS platform for the multicomponent quantification of endogenous steroids. We developed and validated a GC-MS/MS method for the quantification of 58 unconjugated steroids and 42 polar conjugates of steroids (after hydrolysis) in human blood. The present method was validated not only for blood of men and non-pregnant women but also for blood of pregnant women and for mixed umbilical cord blood. The spectrum of analytes includes common hormones operating via nuclear receptors as well as other bioactive substances like immunomodulatory and neuroactive steroids. Our present results are comparable with those from our previously published GC-MS method as well as the results of others. The present method was extended for corticoids and 17alpha-hydroxylated 5alpha/ß-reduced pregnanes, which are useful for the investigation of alternative "backdoor" pathway. When comparing the analytical characteristics of the present and previous method, the first exhibit by far higher selectivity, and generally higher sensitivity and better precision particularly for 17alpha-hydroxysteroids.
Collapse
Affiliation(s)
- M Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Národní 8, 116 94, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
van Rooyen D, Gent R, Barnard L, Swart AC. The in vitro metabolism of 11β-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway. J Steroid Biochem Mol Biol 2018; 178:203-212. [PMID: 29277707 DOI: 10.1016/j.jsbmb.2017.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/24/2023]
Abstract
Increased circulating 11β-hydroxyprogesterone (11OHP4), biosynthesised in the human adrenal, is associated with 21-hydroxylase deficiency in congenital adrenal hyperplasia. 17α-hydroxyprogesterone levels are also increased, with the steroid's metabolism to dihydrotestosterone in the backdoor pathway contributing to hyperandrogenic clinical conditions. In this study we investigated the in vitro biosynthesis and downstream metabolism of 11OHP4. Both cytochrome P450 11β-hydroxylase and aldosterone synthase catalyse the biosynthesis of 11OHP4 from progesterone (P4) which is converted to 11-ketoprogesterone (11KP4) by 11β-hydroxysteroid dehydrogenase type 2, while type 1 readily catalysed the reverse reaction. We showed in HEK-293 cells that these C11-oxy C21 steroids were metabolised by steroidogenic enzymes in the backdoor pathway-5α-reductase (SRD5A) and 3α-hydroxysteroid type 3 (AKR1C2) converted 11OHP4 to 5α-pregnan-11β-ol,3,20-dione and 5α-pregnan-3α,11β-diol-20-one, while 11KP4 was converted to 5α-pregnan-3,11,20-trione and 5α-pregnan-3α-ol-11,20-dione (alfaxalone), respectively. Cytochrome P450 17α-hydroxylase/17,20-lyase catalysed the hydroxylase and lyase reaction to produce the C11-oxy C19 steroids demonstrated in the conversion of alfaxalone to 11-oxy steroids demonstrated in the conversion of alfaxalone to 11ketoandrosterone. In LNCaP cells, a prostate cancer cell model endogenously expressing the relevant enzymes, 11OHP4 and 11KP4 were metabolised to the potent androgen, 11-ketodihydrotestosterone (11KDHT), thus suggesting the C11-oxy C21 steroids contribute to the pool of validating the in vitro biosynthesis of C11-oxy C19 steroids from C11-oxy C21 steroids. The in vitro reduction of 11KP4 at C3 and C5 by AKR1C2 and SRD5A has confirmed the metabolic route of the urinary metabolite, 3α,20α-dihydroxy-5β-pregnan-11-one. Although our assays have demonstrated the conversion of 11OHP4 and 11KP4 by steroidogenic enzymes in the backdoor pathway yielding 11KDHT, thus suggesting the C11-oxy C21 steroids contribute to the pool of potent androgens, the in vivo confirmation of this metabolic route remains challenging.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rachelle Gent
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Lise Barnard
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
8
|
Monostori P, Szabó P, Marginean O, Bereczki C, Karg E. Concurrent Confirmation and Differential Diagnosis of Congenital Adrenal Hyperplasia from Dried Blood Spots: Application of a Second-Tier LC-MS/MS Assay in a Cross-Border Cooperation for Newborn Screening. Horm Res Paediatr 2016; 84:311-8. [PMID: 26397944 DOI: 10.1159/000439380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Newborn screening for congenital adrenal hyperplasia (CAH) is generally performed using 17- hydroxyprogesterone dissociation-enhanced, lanthanide fluorescence immunoassay (DELFIA®). The primary screening results must be confirmed due to high false-positive rates; however, the need to obtain a separate specimen can hamper early recognition, differential diagnosis and treatment. We aimed to develop a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that allows both the confirmation and differential diagnosis of CAH using the same dried blood spot (DBS) as in primary screening. METHODS An LC-MS/MS assay for cortisol, 21-deoxycortisol, 11-deoxycortisol, 4-androstenedione and 17-hydroxyprogesterone was developed, validated and applied to a total of 163 DBS samples tested positive in primary newborn screening in a cross-border cooperation. RESULTS Excellent baseline resolution and reliable determination of all analytes were achieved in DBS samples following simple sample preparation without derivatization. Of a total of 163 DBS samples tested positive in primary screening, the 21-hydroxylase-deficient form of CAH was confirmed in 1 sample. CONCLUSIONS The present LC-MS/MS assay was successfully applied as a second-tier test in a cross-border cooperation for newborn screening. The assay allows concurrent confirmation and differential diagnosis of CAH and can be performed on the same DBS samples as in primary screening, enabling early diagnosis and treatment.
Collapse
Affiliation(s)
- Péter Monostori
- Department of Paediatrics, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
9
|
Greaves RF, Jevalikar G, Hewitt JK, Zacharin MR. A guide to understanding the steroid pathway: new insights and diagnostic implications. Clin Biochem 2014; 47:5-15. [PMID: 25086367 DOI: 10.1016/j.clinbiochem.2014.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 11/16/2022]
Abstract
Steroid analysis has always been complicated requiring a clear understanding of both the clinical and analytical aspects in order to accurately interpret results. The literature relating to this specialised area spans many decades and the intricacies of the steroid pathway have evolved with time. A number of key changes, including discovery of the alternative androgen pathway, have occurred in the last decade, potentially changing our understanding and approach to investigating disorders of sexual development. Such investigation usually occurs in specialised paediatric centres and although preterm infants represent only a small percentage of the patient population, consideration of the persistence of the foetal adrenal zone is an additional important consideration when undertaking steroid hormone investigations. The recent expanded role of mass spectrometry and molecular diagnostic methods provides significant improvements for accurate steroid quantification and identification of enzyme deficiencies. However analysis of steroids and interpretation of results remain complicated. This review aims to provide an insight into the complexities of steroid measurement in children and offers an updated guide to interpretation, of serum and urine steroids through the presentation of a refined steroid pathway.
Collapse
Affiliation(s)
- Ronda F Greaves
- School of Medical Sciences, RMIT University, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Jacqueline K Hewitt
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Endocrinology & Diabetes, The Royal Children's Hospital, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Margaret R Zacharin
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Endocrinology & Diabetes, The Royal Children's Hospital, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Koyama Y, Homma K, Hasegawa T. Urinary steroid profiling: a powerful method for the diagnosis of abnormal steroidogenesis. Expert Rev Endocrinol Metab 2014; 9:273-282. [PMID: 30736166 DOI: 10.1586/17446651.2014.904199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we will focus on urinary steroid profiling by gas chromatography mass spectrometry (GC/MS) and summarize its contribution to the diagnosis of abnormal steroidogenesis; congenital enzyme deficiency of steroid synthesis and metabolism, adrenal carcinoma and other steroid related diseases. Mass spectrometry technique, such as GC/MS and liquid chromatography tandem mass spectrometry (LC-MS/MS), has become the main tool for steroid measurement and GC/MS is mainly used for urine sampling. We will discuss the pros and cons of urinary steroid profiling by GC/MS and LC-MS/MS. Although GC/MS analysis needs intricate pretreatment, time and expenses, sensitive and simultaneous measurement of whole pathway steroid measurements have improved the accuracy of diagnosis.
Collapse
Affiliation(s)
- Yuhei Koyama
- a Mitsubishi Chemical Medience Co., Tokyo, Japan
| | - Keiko Homma
- b Keio University Hospital Central Clinical Laboratories, Tokyo, Japan
| | - Tomonobu Hasegawa
- c Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
11
|
Investigation of endogenous corticosteroids profiles in human urine based on liquid chromatography tandem mass spectrometry. Anal Chim Acta 2014; 812:92-104. [PMID: 24491769 DOI: 10.1016/j.aca.2013.12.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 01/23/2023]
Abstract
The accurate and precise measurement of endogenous corticosteroids in urine is a powerful tool to understand the biochemical state in several diseases. In this study, a rapid, accurate, and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantification of 67 endogenous gluco- and mineralo-corticosteroids and progestins has been developed and validated. Sample preparation, chromatographic separation, and mass spectrometric detection were optimized. Urine samples (0.5 mL) were hydrolyzed with β-glucuronidase and the released analytes were extracted by liquid-liquid extraction. The chromatographic separation was performed in 20 min after redisolution of the extract. MS behavior of endogenous corticosteroids was evaluated in order to select the most specific precursor ion ([M+H](+), [M+NH4](+), or [M+H-nH2O](+)) for the detection. MS/MS determination was performed under selected reaction monitoring mode using electrospray ionization in positive mode. The method was shown to be linear (r>0.99) in the range of endogenous concentrations for all studied metabolites. Limits of detection (LOD) below 1 ng mL(-1) were typically obtained for analytes with a 3-oxo-4-ene structure whereas LODs below 15 ng mL(-1) were common for the rest of analytes. Recoveries were higher than 80% and intra-assay precisions below 20%, evaluated at three concentration levels, were found for most steroids. No significant or moderate matrix effect, ranging from 54 to 155%, was observed for most of the analytes. The applicability of the method was confirmed by analyzing 24h urine samples collected from twenty healthy volunteers and comparing the results with previously established normal ranges. The wide coverage of corticosteroid metabolism, together with short analysis time, low sample volume, simple sample preparation, and satisfactory quantitative results make this method useful for clinical purposes.
Collapse
|
12
|
Christakoudi S, Cowan DA, Christakudis G, Taylor NF. 21-hydroxylase deficiency in the neonate - trends in steroid anabolism and catabolism during the first weeks of life. J Steroid Biochem Mol Biol 2013; 138:334-47. [PMID: 23916492 DOI: 10.1016/j.jsbmb.2013.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Deficiency of 21-hydroxylase provides an in vivo model of intrauterine induction of enzymes participating in steroid anabolism and catabolism. Quantitative data for 93 steroid metabolites in urine from 111 patients and 7 controls (25 samples) were compared over the first six weeks of life. Net flux through the key anabolic enzymes was examined by comparison of the totals of steroids derived from the intermediates prior to and following each enzymatic step. Metabolic relationships were established on structural grounds and by Pearson correlation. The relative importance of each catabolic route was evaluated after summing metabolites classified according to their structure as fetal, neonatal, and classical (adult) type. Hierarchical cluster analysis identified the structure at C3-C5 as a key distinguishing feature of the major catabolic streams and demonstrated a split point in metabolic pattern in patients at 7 days. Changes with time in steroid metabolism, larger in patients than in controls, could be interpreted as reflecting increased cortisol demand post partum, the clinical onset of salt-wasting and a transition in catabolism from fetal to postnatal life. Faster involution of the fetal zone and pronounced enhancement of steroid production in zona fasciculata and zona glomerulosa were indicated in patients. Predominant at birth were 'planar' fetal-type 5α-reduced metabolites, adapted to placental excretion, which gave way to additionally hydroxylated neonatal-type metabolites, facilitating renal excretion. Classical metabolism made gains over the study period. Overproduction of steroids in utero in 21-hydroxylase deficiency would have induced fetal catabolic pathways dependent on 5α-reduction. A progressive increase of steroids likely to arise from 5α-reductase type 2 activity, again more distinct in disease, was observed. We demonstrate that the key intermediates in the hypothetical 'backdoor' pathway of androgen synthesis are part of a broader catabolic network and should not be examined in isolation.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Clinical Biochemistry, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | | | | | | |
Collapse
|