1
|
Lu L, Li J, Zhang L, Zhang Y, Li Z, Lan J, Zeng R, Fang S, Zhang T, Ding Y. A rapid quantitative UPLC-MS/MS method for analysis of key regulatory oxysterols in biological samples for liver cancer. J Steroid Biochem Mol Biol 2024; 243:106577. [PMID: 38971336 DOI: 10.1016/j.jsbmb.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
An UPLC-APCI-MS/MS method was developed for the simultaneous determination of cholesterol, 7-dehydrocholesterol (7DHC) and eight oxysterols including 27-hydroxycholesterol (27OHC), 7α-hydroxycholesterol (7αOHC), 7β-hydroxycholesterol (7βOHC), 24S-hydroxycholesterol (24SOHC), 25-hydroxycholesterol (25OHC), 7α,24S-dihydroxycholesterol (7α,24SdiOHC), 7α,25-dihydroxycholesterol (7α,25diOHC), and 7α,27-dihydroxycholesterol (7α,27diOHC). It has been used for quantitative analysis of cholesterol, 7DHC and eight oxysterols in hepatocellular carcinoma (HCC) cells, plasma and tumor tissue samples. And the above compounds were extracted from the biological matrix (plasma and tissue) using liquid-liquid extraction with hexane/isopropanol after saponification to cleave the steroids from their esterified forms without further derivatization. Then cholesterol, 7DHC and oxysterols were separated on a reversed phase column (Agilent Zorbax Eclipse plus, C18) within 8 min using a gradient elution with 0.1 % formic acid in H2O and methanol and detected by an APCI triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) of the cholesterol, 7DHC and oxysterols ranged from 3.9 ng/mL to 31.25 ng/mL, and the recoveries ranged from 83.0 % to 113.9 %. Cholesterol, 7DHC and several oxysterols including 27OHC, 7αOHC and 7βOHC were successfully quantified in HCC cells, plasma, tissues and urine of HCC mice. Results showed that 27OHC was at high levels in three kind of HCC cells and tumor tissues as well as plasma samples from both HepG2 and Huh7 bearing mice model,and the high levels of 27OHC in tumors were associated with HCC development. Moreover, the levels of cholesterol in HCC cells and tumor issues varied in different HCC cells and mice model. Oxysterols profiling in biological samples might provide complementary information in cancer diagnosis.
Collapse
Affiliation(s)
- Lu Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijuan Zhang
- National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyuan Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhang Y, Wang G, Shao Y, Zheng P, Guo C, Liu Z, Shen L, Liu Z, Ding J, Zhang H. Simultaneous determination of 18 steroids in the hypothalamic pituitary gonadal axis based on UPLC-MS/MS with multimode ionization. Analyst 2024; 149:4663-4674. [PMID: 39073090 DOI: 10.1039/d4an00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
To objectively quantify changes in steroid hormones in organisms caused by adverse environmental loads, we developed a simple and sensitive UPLC-MS/MS (ultra-performance liquid chromatography triple quadrupole mass spectrometry) method for the simultaneous determination of 18 steroid hormones on the HPG axis. This analytical method was based on liquid extraction and a multimode electrospray and atmospheric pressure chemical ionization (ESCi) source, which was optimized by mass spectrometry, liquid phase and pretreatment for the quantification of cholesterol (CH), aldosterone (A), cortisone (E), hydrocortisone (F), 21-deoxycortisol (21-DF), corticosterone (B), 11-deoxycortisol (11-DF), androstenedione (A2), estradiol (E2), estrone (E1), 2-methoxyestradiol (2-MeE2), 21-hydroxyprogesterone (21-OHP), 17-α hydroxyprogesterone (17α-OHP), testosterone (T), dehydroepiandrosterone (DHEA), progesterone (P4), dihydrotestosterone (DHT), and pregnenolone (P5). The method exhibits linearity in the analyte-concentration range 0.03-1000 μg mL-1 (r2 > 0.99), the spiked recoveries for the concentration range tested are 76.22-113.66%, and the relevant parameters of precision are 7.52-1.14%. Compared to other methods, this new method not only uses a small amount of serum (only 100 μL), but also permits the analysis of the challenging steroid, cholesterol. Furthermore, the method was successfully applied to the determination of steroids in Mus musculus, Carassius auratus, Rana catesbeiana Shaw, and Rana nigromaculata serum samples from randomly selected individuals. Therefore, this method is efficient and a very useful tool for assessing changes in steroid hormones.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Guanghui Wang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Yongjian Shao
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Pei Zheng
- Daishan Branch of Ecological Environment Bureau, 316299, Zhoushan, Zhejiang, China
| | - Chunyan Guo
- Zhejiang Radiation Environment Monitoring Station (Technical Center for Radiation Environment Monitoring, Ministry of Ecology and Environment), 310012, Hangzhou, Zhejiang, China
| | - Zhiqun Liu
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Lilai Shen
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Zhiquan Liu
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Jiafeng Ding
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Teng YC, Gielen MC, de Gruijter NM, Ciurtin C, Rosser EC, Karu K. Phytosterols in human serum as measured using a liquid chromatography tandem mass spectrometry. J Steroid Biochem Mol Biol 2024; 241:106519. [PMID: 38614432 DOI: 10.1016/j.jsbmb.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Phytosterols are lipophilic compounds found in plants with structural similarity to mammalian cholesterol. They cannot be endogenously produced by mammals and therefore always originate from diet. There has been increased interest in dietary phytosterols over the last few decades due to their association with a variety of beneficial health effects including low-density lipoprotein cholesterol lowering, anti-inflammatory and anti-cancerous effects. They are proposed as potential moderators for diseases associated with the central nervous system where cholesterol homeostasis is found to be imperative (multiple sclerosis, dementia, etc.) due to their ability to reach the brain. Here we utilised an enzyme-assisted derivatisation for sterol analysis (EADSA) in combination with a liquid chromatography tandem mass spectrometry (LC-MSn) to characterise phytosterol content in human serum. As little as 100 fg of plant sterol was injected on a reversed phase LC column. The method allows semi-quantitative measurements of phytosterols and their derivatives simultaneously with measurement of cholesterol metabolites. The identification of phytosterols in human serum was based on comparison of their LC retention times and MS2, MS3 spectra with a library of authentic standards. Free campesterol serum concentration was in the range from 0.30-4.10 µg/mL, β-sitosterol 0.16-3.37 µg/mL and fucosterol was at lowest concentration range from 0.05-0.38 µg/mL in ten individuals. This analytical methodology could be applied to the analysis of other biological fluids and tissues.
Collapse
Affiliation(s)
- Yu Chun Teng
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Marie Claire Gielen
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Nina M de Gruijter
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom; Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Rojas D, Benachenhou S, Laroui A, Aden AA, Abolghasemi A, Galarneau L, Irakoze TJ, Plantefeve R, Bouhour S, Toupin A, Corbin F, Fink G, Mallet PL, Çaku A. Development and validation of a liquid chromatography-tandem mass spectrometry assay to quantify plasma 24(S)-hydroxycholesterol and 27-hydroxycholesterol: A new approach integrating the concept of ion ratio. J Steroid Biochem Mol Biol 2023; 235:106408. [PMID: 37806531 DOI: 10.1016/j.jsbmb.2023.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Accurate quantification of 24(S)-hydroxycholesterol and 27-hydroxycholesterol holds substantial biological significance due to their involvement in pivotal cellular processes, encompassing cholesterol homeostasis, inflammatory responses, neuronal signaling, and their potential as disease biomarkers. The plasma determination of these oxysterols is challenging considering their low concentrations and similarities in terms of empirical formulae, molecular structure, and physicochemical properties across all human endogenous plasma oxysterols. To overcome these sensitivity and specificity issues, we developed and validated a quantification method using liquid chromatography coupled to a tandem mass spectrometry instrument. Validation studies were designed inspired by Clinical and Laboratory Standards Institute (CLSI) C62-A Guidelines. The linearity ranged between 20 and 300 nM for both oxysterols with limits of quantification at 20 nM and 30 nM for 24(S)-OHC and 27-OHC, respectively. Inter-day precision coefficient variations (CV) were lower than 10% for both oxysterols. An optimal separation of 25-OHC was obtained from 24(S)-OHC and 27-OHC with a resolution (Rs) > 1.25. The determination and validation of ion ratios for 24(S)-OHC and 27-OHC enabled another quality check in identifying interferents that could impact the quantification. Our developed and validated LC-MS/MS method allows consistent and reliable quantification of human plasmatic 24(S)-OHC and 27-OHC that is warranted in fundamental and clinical research projects.
Collapse
Affiliation(s)
- Daniela Rojas
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sérine Benachenhou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Asma Laroui
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amira Abdourahim Aden
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Armita Abolghasemi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Galarneau
- The Medical Physics Unit, McGill University Health Center, Montreal, QC, Canada
| | - Taratibu Janvière Irakoze
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Rosalie Plantefeve
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sophie Bouhour
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amanda Toupin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Fink
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Mallet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Artuela Çaku
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
6
|
Koch E, Bagci M, Kuhn M, Hartung NM, Mainka M, Rund KM, Schebb NH. GC-MS analysis of oxysterols and their formation in cultivated liver cells (HepG2). Lipids 2023; 58:41-56. [PMID: 36195466 DOI: 10.1002/lipd.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Oxysterols play a key role in many (patho)physiological processes and they are potential biomarkers for oxidative stress in several diseases. Here we developed a rapid gas chromatographic-mass spectrometry-based method for the separation and quantification of 11 biologically relevant oxysterols bearing hydroxy, epoxy, and dihydroxy groups. Efficient chromatographic separation (resolution ≥ 1.9) was achieved using a medium polarity 35%-diphenyl/65%-dimethyl polysiloxane stationary phase material (30 m × 0.25 mm inner diameter and 0.25 μm film thickness). Based on thorough analysis of the fragmentation during electron ionization we developed a strategy to deduce structural information of the oxysterols. Optimized sample preparation includes (i) extraction with a mixture of n-hexane/iso-propanol, (ii) removal of cholesterol by solid phase extraction with unmodified silica, and (iii) trimethylsilylation. The method was successfully applied on the analysis of brain samples, showing consistent results with previous studies and a good intra- and interday precision of ≤20%. Finally, we used the method for the investigation of oxysterol formation during oxidative stress in HepG2 cells. Incubation with tert-butyl hydroperoxide led to a massive increase in free radical formed oxysterols (7-keto-chol > 7β-OH-chol >> 7α-OH-chol), while 24 h incubation with the glutathione peroxidase 4 inhibitor RSL3 showed no increase in oxidative stress based on the oxysterol pattern. Overall, the new method described here enables the robust analysis of a biologically meaningful pattern of oxysterols with high sensitivity and precision allowing us to gain new insights in the biological formation and role of oxysterols.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Mustafa Bagci
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Kuhn
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nicole M Hartung
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
7
|
Risso D, Leoni V, Canzoneri F, Arveda M, Zivoli R, Peraino A, Poli G, Menta R. Presence of cholesterol oxides in milk chocolates and their correlation with milk powder freshness. PLoS One 2022; 17:e0264288. [PMID: 35312699 PMCID: PMC8936476 DOI: 10.1371/journal.pone.0264288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cholesterol oxidation products (COPs) of non-enzymatic origin are mainly found in meat, fish, eggs and milk, mostly originating from the type of feeding, processing and storage. To verify the significance of COPs as biomarkers of cholesterol autoxidation and milk freshness, we quantified them in chocolates containing whole milk powders (WMPs) of increasing shelf-lives (i.e. 20, 120, and 180 days). Non-enzymatic total COPs (both free and esterified) ranged from 256.57 ± 11.97 to 445.82 ± 11.88 ng/g, increasing proportionally to the shelf-life of the WMPs, thus reflecting the ingredients’ freshness. Based on the expected theoretical COPs, the effect of processing was quantitatively less significant in the generation of oxysterols (41–44%) than the contribution of the autoxidation of the WMPs over time (56–59%), pointing to the shelf-life as the primary determinant of COPs. Lastly, we quantified COPs of major commercial milk chocolates on the Italian market, which followed a similar distribution (from 240.79 ± 11.74 to 475.12 ± 12.58 ng/g). Although further replications of this work are needed, this study reports preliminary results and a practical example of a first application of non-enzymatic COPs as markers to further quantify and characterize the nutritional quality and freshness, not only of ingredients but also of composite products.
Collapse
Affiliation(s)
- Davide Risso
- Soremartec Italia Srl, Ferrero Group, Alba, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio and Monza, ASST-Monza, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | | | | | | | | | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, Turin, Italy
| | | |
Collapse
|
8
|
Poudel A, Gachumi G, Purves R, Badea I, El-Aneed A. Determination of phytosterol oxidation products in pharmaceutical liposomal formulations and plant vegetable oil extracts using novel fast liquid chromatography - Tandem mass spectrometric methods. Anal Chim Acta 2022; 1194:339404. [PMID: 35063161 DOI: 10.1016/j.aca.2021.339404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Phytosterol oxidation products (POPs) formed by the auto-oxidation of phytosterols can lead to negative health consequences. New liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative and qualitative approaches were developed. For quantification, sixteen phytosterol oxidation products (POPs) in liposomal formulations; namely 7-keto, 7-hydroxy, 5,6-epoxy, and 5,6-dihydroxy derivatives of brassicasterol, campesterol, stigmasterol, and β-sitosterol were quantified. The method has a short run time of 5 min, achieved on a poroshell C18 column, using isocratic elution. To the best of our knowledge, this is the shortest run time among reported methods for the quantitative analysis of POPs. Atmospheric pressure chemical ionization (APCI) was used, and the mobile phase was composed of acetonitrile/methanol (99:1 v/v). The quantitative method was validated as per the FDA guidelines for linearity, accuracy, precision, selectivity, sensitivity, matrix effect, dilution integrity, and stability. The method was applied for the quantification of POPs in liposomal phytosterol formulations prepared with and without tocopherols, as antioxidants. The formulation process had little impact on the formation of POPs as only 7-ketobrassicasterol was quantified in tested samples. The quantified value of POPs in liposomal samples was insignificant to impart any toxicological effects. Other degradation products such as 7-hydroxy, 5,6-epoxy and 5,6-dihydroxy derivatives of brassicasterol, campesterol and β-sitosterol were below the lower limit of quantification. Phytosterol-containing formulations were then assessed for their oxidative stability after microwave exposure for 5 min. The incorporation of tocopherols significantly increased the stability of phytosterols in the liposomal formulations. Finally, LC-MS/MS qualitative identification of phytosterols obtained from extra virgin olive oil was performed. New POPs, namely 7-ketoavenasterol, and 7-ketomethylenecycloartenol were putatively identified, illustrating the applicability of the method to identify POPs with varying structures present in various phytosterol sources. In fact, it is the first time that 7-ketomethylenecycloartenol is reported as a POP.
Collapse
Affiliation(s)
- Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy Purves
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Canadian Food Inspection Agency, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
9
|
Poli G, Leoni V, Biasi F, Canzoneri F, Risso D, Menta R. Oxysterols: From redox bench to industry. Redox Biol 2022; 49:102220. [PMID: 34968886 PMCID: PMC8717233 DOI: 10.1016/j.redox.2021.102220] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
More and more attention is nowadays given to the possible translational application of a great number of biochemical and biological findings with the involved molecules. This is also the case of cholesterol oxidation products, redox molecules over the last years deeply investigated for their implication in human pathophysiology. Oxysterols of non-enzymatic origin, the excessive increase of which in biological fluids and tissues is of toxicological relevance for their marked pro-oxidant and pro-inflammatory properties, are increasingly applied in clinical biochemistry as molecular markers in the diagnosis and monitoring of several human and veterinary diseases. Conversely, oxysterols of enzymatic origin, the production of which is commonly under physiological regulation, could be considered and tested as promising pharmaceutical agents because of their antiviral, pro-osteogenic and antiadipogenic properties of some of them. Very recently, the quantification of oxysterols of non-enzymatic origin has been adopted in a systematic way to evaluate, monitor and improve the quality of cholesterol-based food ingredients, that are prone to auto-oxidation, as well as their industrial processing and the packaging and the shelf life of the finished food products. The growing translational value of oxysterols is here reviewed in its present and upcoming applications in various industrial fields.
Collapse
Affiliation(s)
- Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, 20126, Milan, Italy
| | - Fiorella Biasi
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| | - Roberto Menta
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| |
Collapse
|
10
|
Junker J, Kamp F, Winkler E, Steiner H, Bracher F, Müller C. Effective sample preparation procedure for the analysis of free neutral steroids, free steroid acids and sterol sulfates in different tissues by GC-MS. J Steroid Biochem Mol Biol 2021; 211:105880. [PMID: 33757894 DOI: 10.1016/j.jsbmb.2021.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile. We developed and validated a method that allows the analysis of free neutral steroids, including intermediates of cholesterol biosynthesis, free oxysterols, C19 and C21 steroids, free steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and report the endogenous concentrations of 29 physiological steroids.
Collapse
Affiliation(s)
- Julia Junker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Edith Winkler
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany.
| |
Collapse
|
11
|
Gachumi G, Poudel A, Wasan KM, El-Aneed A. Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation. Pharmaceutics 2021; 13:pharmaceutics13020268. [PMID: 33669349 PMCID: PMC7920278 DOI: 10.3390/pharmaceutics13020268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products (POPs) present in a variety of enriched and non-enriched foods can show pro-atherogenic and pro-inflammatory properties. Therefore, it is crucial to screen and analyze various phytosterol-containing products for the presence of POPs and ultimately design or modify phytosterols in such a way that prevents the generation of POPs and yet maintains their pharmacological activity. The main approaches for the analysis of POPs include the use of mass spectrometry (MS) linked to a suitable separation technique, notably gas chromatography (GC). However, liquid chromatography (LC)-MS has the potential to simplify the analysis due to the elimination of any derivatization step, usually required for GC-MS. To reduce the transformation of phytosterols to their oxidized counterparts, formulation strategies can theoretically be adopted, including the use of microemulsions, microcapsules, micelles, nanoparticles, and liposomes. In addition, co-formulation with antioxidants, such as tocopherols, may prove useful in substantially preventing POP generation. The main objectives of this review article are to evaluate the various analytical strategies that have been adopted for analyzing them. In addition, formulation approaches that can prevent the generation of these oxidation products are proposed.
Collapse
Affiliation(s)
- George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Kishor M. Wasan
- iCo Therapeutics Inc., Vancouver, BC V6Z 2T3, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Skymount Medical Group Inc., Calgary, AB T3C 0J8, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
- Correspondence: ; Tel.: +1-306-966-2013
| |
Collapse
|
12
|
Zmysłowski A, Sitkowski J, Bus K, Ofiara K, Szterk A. Synthesis and search for 3β,3'β-disteryl ethers after high-temperature treatment of sterol-rich samples. Food Chem 2020; 329:127132. [PMID: 32504917 DOI: 10.1016/j.foodchem.2020.127132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
It has been proven that at increased temperature, sterols can undergo various chemical reactions e.g., oxidation, dehydrogenation, dehydration and polymerisation. The objectives of this study are to prove the existence of dimers and to quantitatively analyse the dimers (3β,3'β-disteryl ethers). Sterol-rich samples were heated at 180 °C, 200 °C and 220 °C for 1 to 5 h. Quantitative analyses of the 3β,3'β-disteryl ethers were conducted using liquid extraction, solid-phase extraction and gas chromatography coupled with mass spectrometry. Additionally, for the analyses, suitable standards were synthetized from native sterols. To identify the mechanism of 3β,3'β-disteryl ether formation at high temperatures, an attempt was made to use the proposed synthesis method. Additionally, due to the association of sterols and sterol derivatives with atherosclerosis, preliminary studies with synthetized 3β,3'β-disteryl ethers on endothelial cells were conducted.
Collapse
Affiliation(s)
- Adam Zmysłowski
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| | - Jerzy Sitkowski
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Katarzyna Bus
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Karol Ofiara
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Arkadiusz Szterk
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| |
Collapse
|
13
|
West H, Reid GE. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M] +. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal Chim Acta 2020; 1141:100-109. [PMID: 33248642 DOI: 10.1016/j.aca.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Sterols are a class of lipid molecules that include cholesterol, oxysterols, and sterol esters. Sterol lipids play critical functional roles in mammalian biology, including the dynamic regulation of cell membrane fluidity, as precursors for the synthesis of bile acids, steroid hormones and vitamin D, as regulators of gene expression in lipid metabolism, and for cholesterol transport and storage. The most common method employed for sterol analysis is high performance liquid chromatography coupled with tandem mass spectrometry (MS/MS). However, conventional collision induced dissociation (CID) methods used for ion activation during MS/MS typically fail to provide sufficient structural information for unambiguous assignment of sterol species based on their fragmentation behaviour alone. This places a significant burden on the efficiency of the chromatographic separation methods for the effective separation of isomeric sterols. Here, toward developing an improved analysis strategy for sterol lipids, we have explored the novel use of 213 nm photodissociation MS/MS and hybrid multistage-MS/MS (i.e., MSn) data acquisition approaches for the improved structural characterization of cholesterol, representative isomeric oxysterols, and cholesteryl esters. Most notably, UVPD-MS/MS of ammoniated, lithiated and sodiated adducts of cholesterol, several representative oxysterol species, and an oxosterol lipid, are shown to give rise to abundant [M]+. radical cation products, that subsequently fragment during collision induced MS3 to yield extensive structurally informative product ions, similar to those observed by Electron Ionization, and that enable their unambiguously assignment, including isomeric differentiation of oxysterols. For cholesterol esters, a reversed hybrid collision induced-MS/MS and UVPD-MS3 approach is shown to enable assignment of the sterol backbone, and localization of the site(s) of unsaturation within esterified fatty acyl chains.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Bio 21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
14
|
Zeitz JO, Fleischmann A, Ehbrecht T, Most E, Friedrichs S, Whelan R, Gessner DK, Failing K, Lütjohann D, Eder K. Effects of supplementation of DL-methionine on tissue and plasma antioxidant status during heat-induced oxidative stress in broilers. Poult Sci 2020; 99:6837-6847. [PMID: 33248599 PMCID: PMC7704969 DOI: 10.1016/j.psj.2020.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine (Cys) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Anne Fleischmann
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Tamara Ehbrecht
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Erika Most
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Denise K Gessner
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany.
| | - Klaus Failing
- Unit of Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Klaus Eder
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
15
|
Sottero B, Rossin D, Staurenghi E, Gamba P, Poli G, Testa G. Omics analysis of oxysterols to better understand their pathophysiological role. Free Radic Biol Med 2019; 144:55-71. [PMID: 31141713 DOI: 10.1016/j.freeradbiomed.2019.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
High amounts of cholesterol have been definitely associated with the pathogenesis of several diseases, including metabolic and neurodegenerative disorders, cardiovascular diseases, and cancer. In all these pathologies the exacerbation of pro-oxidant and inflammatory responses is a consistent feature. In this scenario, species derived from enzymatic and non-enzymatic cholesterol oxidation, namely oxysterols, are strongly suspected to play a primary role. The consideration of these bioactive lipids is therefore helpful in investigating pathological mechanisms and may also acquire clinical value for the diagnosis and treatment of diseases. For this purpose and considering that a great number of oxysterols may be present together in the body, the employment of lipidomics technology certainly represents a powerful strategy for the simultaneous detection and characterization of these compounds in biological specimens. In this review, we will discuss the applicability of the lipidomics approach in the study of the association between oxysterols and diseases.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy.
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| |
Collapse
|
16
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
17
|
Fuhrmann A, Weingärtner O, Meyer S, Cremers B, Seiler-Mußler S, Schött HF, Kerksiek A, Friedrichs S, Ulbricht U, Zawada AM, Laufs U, Scheller B, Fliser D, Schulze PC, Böhm M, Heine GH, Lütjohann D. Plasma levels of the oxyphytosterol 7α-hydroxycampesterol are associated with cardiovascular events. Atherosclerosis 2018; 279:17-22. [PMID: 30366187 DOI: 10.1016/j.atherosclerosis.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS There are safety issues regarding plant sterol ester-enriched functional food. Oxidized plant sterols, also called oxyphytosterols, are supposed to contribute to plant sterol atherogenicity. This study aimed to analyze associations of plasma oxyphytosterol levels with cardiovascular events. METHODS Plasma cholesterol was measured by gas chromatography-flame ionization detection. Plasma campesterol and sitosterol and their 7-oxygenated metabolites were analyzed by gas chromatography-mass selective detection. RESULTS In 376 patients admitted for elective coronary angiography, who were not on lipid-lowering drugs, 82 cardiovascular events occurred during a follow-up period of 4.2 ± 1.8 years. Patients with cardiovascular events had significantly higher 7α-hydroxycampesterol plasma levels (median, 0.46; [interquartile range (IQR) 0.22-0.81] nmol/L vs. median, 0.25 [IQR, 0.17-0.61] nmol/L; p = 0.003) and 7α-hydroxycampesterol-to-cholesterol ratios (median 0.08 [IQR, 0.04-0.14] nmol/mmol vs. median, 0.05 [IQR 0.03-0.11] nmol/mmol; p = 0.005) than controls without such events. Patients above the median were characterized by higher cumulative event rates in Kaplan-Meier-analysis (Logrank-test p = 0.084 and p = 0.025) for absolute and cholesterol corrected 7α-hydroxycampesterol, respectively. After adjustment for influencing factors and related lipids, the hazard ratios per one standard deviation of the log-transformed variables (HR) were 1.19 [95% confidence interval (CI), 0.95-1.48], p = 0.132 for 7α-hydroxycampesterol and HR, 1.18 [95% CI, 0.94-1.48], p = 0.154 for 7α-hydroxycampesterol-to-cholesterol ratio. None of the other investigated oxyphytosterols showed an association with cardiovascular events. CONCLUSIONS In patients not on lipid-lowering drugs, absolute plasma levels of 7α-hydroxycampesterol and their ratios to cholesterol are associated with cardiovascular events. Further research is required to elucidate the role of OPS in cardiovascular diseases.
Collapse
Affiliation(s)
- Arne Fuhrmann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Germany
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Germany; Universitätsklinik für Innere Medizin - Kardiologie, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg, Germany, European Medical School Oldenburg-Groningen, Germany
| | - Sven Meyer
- Universitätsklinik für Innere Medizin - Kardiologie, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg, Germany, European Medical School Oldenburg-Groningen, Germany
| | - Bodo Cremers
- Klinik für Innere Medizin III, Abteilung für Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Sarah Seiler-Mußler
- Klinik für Innere Medizin IV, Abteilung für Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Hans-F Schött
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Anja Kerksiek
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Germany
| | - Silvia Friedrichs
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Germany
| | - Ursula Ulbricht
- Klinik für Innere Medizin IV, Abteilung für Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Adam M Zawada
- Klinik für Innere Medizin IV, Abteilung für Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany
| | - Bruno Scheller
- Klinik für Innere Medizin III, Abteilung für Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Danilo Fliser
- Klinik für Innere Medizin IV, Abteilung für Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | | | - Michael Böhm
- Klinik für Innere Medizin III, Abteilung für Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Gunnar H Heine
- Klinik für Innere Medizin IV, Abteilung für Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Medizinische Klinik II, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Germany.
| |
Collapse
|
18
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
19
|
Separation and Determination of Some of the Main Cholesterol-Related Compounds in Blood by Gas Chromatography-Mass Spectrometry (Selected Ion Monitoring Mode). SEPARATIONS 2018. [DOI: 10.3390/separations5010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Determination of total plasma oxysterols by enzymatic hydrolysis, solid phase extraction and liquid chromatography coupled to mass-spectrometry. J Pharm Biomed Anal 2018; 150:396-405. [DOI: 10.1016/j.jpba.2017.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/04/2023]
|
21
|
Lütjohann D, Marinova M, Wolter K, Willinek W, Bitterlich N, Coenen M, Coch C, Stellaard F. Influence of Chitosan Treatment on Surrogate Serum Markers of Cholesterol Metabolism in Obese Subjects. Nutrients 2018; 10:E72. [PMID: 29324705 PMCID: PMC5793300 DOI: 10.3390/nu10010072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Chitosan treatment results in significantly lower serum low density lipoprotein (LDL) cholesterol concentrations. To assess the working mechanisms of chitosan, we measured serum surrogate markers of cholesterol absorption (campesterol, sitosterol, cholestanol), synthesis (lathosterol, lanosterol, desmosterol), and degradation to bile acids (7α-hydroxy-cholesterol, 27-hydroxy-cholesterol), corrected for cholesterol concentration (R_sterols). Over 12 weeks, 116 obese subjects (Body Mass Index, BMI 31.7, range 28.1-38.9 kg/m²) were studied under chitosan (n = 61) and placebo treatments (n = 55). The participants were briefly educated regarding improvement of nutrition quality and energy expenditure. Daily chitosan intake was 3200 mg. Serum LDL cholesterol concentration decreased significantly more (p = 0.0252) under chitosan (-8.67 ± 18.18 mg/dL, 5.6%) than under placebo treatment (-1.00 ± 24.22 mg/dL, 0.9%). This reduction was not associated with the expected greater decreases in markers of cholesterol absorption under chitosan treatment. Also, increases in markers of cholesterol synthesis and bile acid synthesis under chitosan treatment were not any greater than under placebo treatment. In conclusion, a significant selective reduction of serum LDL cholesterol under chitosan treatment is neither associated with a reduction of serum surrogate markers of cholesterol absorption, nor with increases of markers for cholesterol and bile acid synthesis.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, D-53127 Bonn, Germany.
| | - Milka Marinova
- Department of Radiology, University Clinics of Bonn, D-53127 Bonn, Germany.
| | - Karsten Wolter
- Department of Radiology, University Clinics of Bonn, D-53127 Bonn, Germany.
| | - Winfried Willinek
- Department of Radiology, University Clinics of Bonn, D-53127 Bonn, Germany.
- Department of Radiology, Neuroradiology, Sonography and Nuclear Medicine, Krankenhaus der Barmherzigen Brüder Trier, D-54292 Trier, Germany.
| | - Norman Bitterlich
- Medizin & Service GmbH, Abt. Biostatistik, Boettcherstraße 10, D-09117 Chemnitz, Germany.
| | - Martin Coenen
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, D-53127 Bonn, Germany.
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, D-53127 Bonn, Germany.
| | - Frans Stellaard
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, D-53127 Bonn, Germany.
| |
Collapse
|
22
|
Sethi S, Hayashi MA, Sussulini A, Tasic L, Brietzke E. Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J Biol Psychiatry 2017; 18:506-520. [PMID: 26555297 DOI: 10.3109/15622975.2015.1117656] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In this review, the authors discuss an overview of lipidomics followed by in-depth discussion of its application to the study of human diseases, including extraction methods of lipids, analytical techniques and clinical research in neuropsychiatric disorders. METHODS Lipidomics is a lipid-targeted metabolomics approach aiming at the comprehensive analysis of lipids in biological systems. Recent technological advancements in mass spectrometry and chromatography have greatly enhanced the development and applications of metabolic profiling of diverse lipids in complex biological samples. RESULTS An effective evaluation of the clinical course of diseases requires the application of very precise diagnostic and assessment approaches as early as possible. In order to achieve this, "omics" strategies offer new opportunities for biomarker identification and/or discovery in complex diseases and may provide pathological pathways understanding for diseases beyond traditional methodologies. CONCLUSIONS This review highlights the importance of lipidomics for the future perspectives as a tool for biomarker identification and discovery and its clinical application.
Collapse
Affiliation(s)
- Sumit Sethi
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| | - Mirian A Hayashi
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| | - Alessandra Sussulini
- b Department of Analytical Chemistry , Institute of Chemistry, Universidade Estadual De Campinas - UNICAMP , Campinas , SP , Brazil
| | - Ljubica Tasic
- c Department of Organic Chemistry , Institute of Chemistry, Universidade Estadual De Campinas - UNICAMP , Campinas , SP , Brazil
| | - Elisa Brietzke
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
23
|
Feasibility of ultra-performance liquid chromatography–ion mobility–time-of-flight mass spectrometry in analyzing oxysterols. J Chromatogr A 2017; 1487:147-152. [DOI: 10.1016/j.chroma.2017.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
|
24
|
Lin Y, Knol D, Valk I, van Andel V, Friedrichs S, Lütjohann D, Hrncirik K, Trautwein EA. Thermal stability of plant sterols and formation of their oxidation products in vegetable oils and margarines upon controlled heating. Chem Phys Lipids 2017; 207:99-107. [PMID: 28163064 DOI: 10.1016/j.chemphyslip.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/30/2017] [Indexed: 11/15/2022]
Abstract
Fat-based products like vegetable oils and margarines are commonly used for cooking, which may enhance oxidation of plant sterols (PS) present therein, leading to the formation of PS oxidation products (POP). The present study aims to assess the kinetics of POP formation in six different fat-based products. Vegetable oils and margarines without and with added PS (7.5-7.6% w/w) in esterified form were heated in a Petri-dish at temperatures of 150, 180 and 210°C for 8, 12 and 16min. PS and POP were analysed using GC-FID and GC-MS-SIM, respectively. Increasing PS content, temperature and heating time led to higher POP formation in all tested fat-based products. PS (either naturally occurring or added) in margarines were less susceptible to oxidation as compared to PS in vegetable oils. The susceptibility of sitosterol to oxidation was about 20% lower than that of campesterol under all the applied experimental conditions. During heating, the relative abundance of 7-keto-PS (expressed as% of total POP) decreased in all the fat-based products regardless of their PS contents, which was accompanied by an increase in the relative abundance of 7-OH-PS and 5,6-epoxy-PS, while PS-triols were fairly unchanged. In conclusion, heating time, temperature, initial PS content and the matrix of the fat-based products (vegetable oil vs. margarine) showed distinct effects on POP formation and composition of individual POP formed.
Collapse
Affiliation(s)
- Yuguang Lin
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | - Diny Knol
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Iris Valk
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Vincent van Andel
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Karel Hrncirik
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| |
Collapse
|
25
|
Cha E, Lee KM, Park KD, Park KS, Lee KW, Kim SM, Lee J. Hydroxycholesterol Levels in the Serum and Cerebrospinal Fluid of Patients with Neuromyelitis Optica Revealed by LC-Ag+CIS/MS/MS and LC-ESI/MS/MS with Picolinic Derivatization: Increased Levels and Association with Disability during Acute Attack. PLoS One 2016; 11:e0167819. [PMID: 27942009 PMCID: PMC5152860 DOI: 10.1371/journal.pone.0167819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS). Hydroxycholesterols (OHCs), metabolites of CNS cholesterol, are involved in diverse cellular responses to inflammation and demyelination, and may also be involved in the pathogenesis of NMO. We aimed to develop a sensitive and reliable method for the quantitative analysis of three major OHCs (24S-, 25-, and 27-OHCs), and to evaluate their concentration in the cerebrospinal fluid (CSF) and serum of patients with NMO. The levels of the three OHCs in the serum and CSF were measured using liquid chromatography-silver ion coordination ionspray tandem mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry with picolinyl ester derivatization, respectively. The linear range was 5–250 ng/mL for 24S- and 27-OHC, and 0.5–25 ng/mL for 25-OHC in serum, and was 0.1–5 ng/mL for 24S- and 27-OHC, and 0.03–1 ng/mL for 25-OHC in CSF. Precision and accuracy were 0.5%–14.7% and 92.5%–109.7%, respectively, in serum, and were 0.8%–7.7% and 94.5%–119.2%, respectively, in CSF. Extraction recovery was 82.7%–90.7% in serum and 68.4%–105.0% in CSF. When analyzed in 26 NMO patients and 23 control patients, the 25-OHC (0.54 ± 0.96 ng/mL vs. 0.09 ± 0.04 ng/mL, p = 0.032) and 27-OHC (2.68 ± 3.18 ng/mL vs. 0.68 ± 0.25 ng/mL, p = 0.005) were increased in the CSF from NMO patients. When we measured the OHCCSF index that controls the effects of blood–brain barrier disruption on the level of OHC in the CSF, the 27-OHCCSF index was associated with disability (0.723; 95% confidence interval (CI)– 0.181, 0.620; p = 0.002), while the 24-OHCCSF index (0.518; 95% CI– 1.070, 38.121; p = 0.040) and 25-OHCCSF index (0.677; 95% CI– 4.313, 18.532; p = 0.004) were associated with the number of white blood cells in the CSF of NMO patients. Our results imply that OHCs in the CNS could play a role in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Eunju Cha
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Kwang-Woo Lee
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sung-Min Kim
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
- * E-mail: (JL); (SMK)
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Korea
- * E-mail: (JL); (SMK)
| |
Collapse
|
26
|
Abstract
Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Isabelle Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia;
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| |
Collapse
|
27
|
Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res 2016; 64:152-169. [PMID: 27687912 DOI: 10.1016/j.plipres.2016.09.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Oxysterols are cholesterol metabolites that can be produced through enzymatic or radical processes. They constitute a large family of lipids (i.e. the oxysterome) involved in a plethora of physiological processes. They can act through GPCR (e.g. EBI2, SMO, CXCR2), nuclear receptors (LXR, ROR, ERα) and through transporters or regulatory proteins. Their physiological effects encompass cholesterol, lipid and glucose homeostasis. Additionally, they were shown to be involved in other processes such as immune regulatory functions and brain homeostasis. First studied as precursors of bile acids, they quickly emerged as interesting lipid mediators. Their levels are greatly altered in several pathologies and some oxysterols (e.g. 4β-hydroxycholesterol or 7α-hydroxycholestenone) are used as biomarkers of specific pathologies. In this review, we discuss the complex metabolism and molecular targets (including binding properties) of these bioactive lipids in human and mice. We also discuss the genetic mouse models currently available to interrogate their effects in pathophysiological settings. We also summarize the levels of oxysterols reported in two key organs in oxysterol metabolism (liver and brain), plasma and cerebrospinal fluid. Finally, we consider future opportunities and directions in the oxysterol field in order to gain a better insight and understanding of the complex oxysterol system.
Collapse
Affiliation(s)
- Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium.
| |
Collapse
|
28
|
Griffiths WJ, Abdel-Khalik J, Crick PJ, Yutuc E, Wang Y. New methods for analysis of oxysterols and related compounds by LC-MS. J Steroid Biochem Mol Biol 2016; 162:4-26. [PMID: 26639636 DOI: 10.1016/j.jsbmb.2015.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022]
Abstract
Oxysterols are oxygenated forms of cholesterol or its precursors. They are formed enzymatically and via reactive oxygen species. Oxysterols are intermediates in bile acid and steroid hormone biosynthetic pathways and are also bioactive molecules in their own right, being ligands to nuclear receptors and also regulators of the processing of steroid regulatory element-binding proteins (SREBPs) to their active forms as transcription factors regulating cholesterol and fatty acid biosynthesis. Oxysterols are implicated in the pathogenesis of multiple disease states ranging from atherosclerosis and cancer to multiple sclerosis and other neurodegenerative diseases including Alzheimer's and Parkinson's disease. Analysis of oxysterols is challenging on account of their low abundance in biological systems in comparison to cholesterol, and due to the propensity of cholesterol to undergo oxidation in air to generate oxysterols with the same structures as those present endogenously. In this article we review the mass spectrometry-based methods for oxysterol analysis paying particular attention to analysis by liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- William J Griffiths
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Jonas Abdel-Khalik
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Peter J Crick
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Eylan Yutuc
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Yuqin Wang
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
29
|
Quantification of oxysterols in human plasma and red blood cells by liquid chromatography high-resolution tandem mass spectrometry. J Chromatogr A 2016; 1439:82-88. [DOI: 10.1016/j.chroma.2015.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
|