1
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Shchetinina MA, Merkulova VM, Bogdanov FB, Sorokin DV, Salnikova DI, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid diacylhydrazines as novel effective agents against hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 2024; 244:106597. [PMID: 39127416 DOI: 10.1016/j.jsbmb.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 μM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 μM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor B Bogdanov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Diana I Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia; N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
2
|
Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers (Basel) 2024; 16:3123. [PMID: 39335095 PMCID: PMC11429518 DOI: 10.3390/cancers16183123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides. DNA alkylation, a well-known mechanism in cancer therapy, involves the attachment of alkyl groups to DNA, leading to DNA damage and subsequent cell death. Antimicrobial peptides, on the other hand, have been shown to be effective anticancer agents due to their ability to selectively disrupt cancer cell membranes and modulate immune responses. This review aims to explore the synergistic potential of these two therapeutic modalities. It examines their mechanisms of action, current research findings, and the promise they offer to improve the efficacy and specificity of cancer treatments. By combining the cytotoxic power of DNA alkylation with the unique properties of antimicrobial peptides, dual-action therapeutics may offer a new and more effective approach to fighting cancer.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
3
|
Lin A, Ghosh A, Yellen S, Ball ZT, Kürti L. Oxidative Nitrogen Insertion into Silyl Enol Ether C═C Bonds. J Am Chem Soc 2024. [PMID: 39013155 DOI: 10.1021/jacs.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Here, we demonstrate a fundamentally new reactivity of the silyl enol ether functionality utilizing an in situ-generated iodonitrene-like species. The present transformation inserts a nitrogen atom between the silyl enol ether olefinic carbons with the concomitant cleavage of the C═C bond. Overall, this facile transformation converts a C-nucleophilic silyl enol ether to the corresponding C-electrophilic N-acyl-N,O-acetal. This unprecedented access to α-amido alkylating agents enables modular derivatization with carbon and heteroatom nucleophiles and the unique late-stage editing of carbon frameworks. The reaction efficiency of this transformation is well correlated with enol ether nucleophilicity as described by the Mayr N scale. Applications presented herein include late-stage nitrogen insertion into carbon skeletons of natural products with previously unattainable regioselectivity as well as modified conditions for 15N labeling of amides and lactams.
Collapse
Affiliation(s)
- Alex Lin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Arghya Ghosh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Simon Yellen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Szánti-Pintér E, Jirkalová L, Pohl R, Bednárová L, Kudova E. Stereoselective Reduction of Steroidal 4-Ene-3-ketones in the Presence of Biomass-Derived Ionic Liquids Leading to Biologically Important 5β-Steroids. ACS OMEGA 2024; 9:7043-7052. [PMID: 38371788 PMCID: PMC10870401 DOI: 10.1021/acsomega.3c08963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
The stereoselective reduction of the steroidal 4-ene-3-ketone moiety (enone) affords the 5β-steroid backbone that is a key structural element of biologically important neuroactive steroids. Neurosteroids have been currently studied as novel and potent central nervous system drug-like compounds for the treatment of, e.g., postpartum depression. As a green methodology, we studied the palladium-catalyzed hydrogenation of steroidal 4-ene-3-ketones in the presence of ionic liquids derived from natural carboxylic acids. The hydrogenation proceeds with improved 5β-selectivity in the presence of tetrabutylammonium carboxylates as additives compared to the exclusive use of an organic solvent. Under optimal conditions, using tetrabutylammonium d-mandelate, the reduction of testosterone led to 5β-dihydrotestosterone in high yield and stereoselectivity and no byproduct formation was observed. Moreover, the catalyst could be recycled. The presence of additional substituents on the steroid backbone showed a significant effect on the 5β-selectivity.
Collapse
Affiliation(s)
- Eszter Szánti-Pintér
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Lada Jirkalová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
5
|
Sflakidou E, Dalezis P, Trafalis DT, Sarli V. Synthesis and antiproliferative activities of steroidal lactam conjugates bearing a new nitrogen mustard. Eur J Med Chem 2023; 249:115133. [PMID: 36696765 DOI: 10.1016/j.ejmech.2023.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alkylating agents are potent anticancer compounds that exert their anticancer properties through the inhibition of cell replication and transcription leading to cell death. Despite the numerous benefits, these agents also have serious drawbacks such as their high toxicity and low specificity towards cancer cells. As previously reported by our group, conjugation of alkylating agents with azasteroids can reduce their systemic toxicity and enhance their anticancer activity. In this work, novel steroidal alkylating agents bearing POPAM-OH were synthesized and their anticancer efficacy was evaluated in vitro and in vivo. All the novel hybrids demonstrated high antiproliferative effects against 5 different cancer cell lines in the low micromolar range. Treatment of SCID mice bearing SKOV-3 or PC-3 tumor xenografts with the most potent hybrid 19 led to significant reduction of tumor size (tumor inhibition TI = 95% in SKOV3 models and TI = 85.2% in PC3 models). Importantly, the acute toxicity of hybrid 19 (LD10 = 36 μΜ, LD50 = 62 μΜ) in CB17 SCID mice exhibited three-fold decrease compared to the acute toxicity of previously reported hybrids of POPAM-NH2. This is an important finding since systemic cytotoxicity is a critical limitation of alkylating agents. Collectively, the steroidal conjugates of POPAM-OH displayed significant anticancer efficacy and reduced toxicity in vitro and in vivo rendering them as good candidates for cancer therapy.
Collapse
Affiliation(s)
- Eleni Sflakidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Greece.
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| |
Collapse
|
6
|
Bansal R, Suryan A. A Comprehensive Review on Steroidal Bioconjugates as Promising Leads in Drug Discovery. ACS BIO & MED CHEM AU 2022; 2:340-369. [PMID: 37102169 PMCID: PMC10125316 DOI: 10.1021/acsbiomedchemau.1c00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever increasing unmet medical requirements of the human race and the continuous fight for survival against variety of diseases give birth to novel molecules through research. As diseases evolve, different strategies are employed to counter the new challenges and to discover safer, more effective, and target-specific therapeutic agents. Among several novel approaches, bioconjugation, in which two chemical moieties are joined together to achieve noticeable results, has emerged as a simple and convenient technique for a medicinal chemist to obtain potent molecules. The steroid system has been extensively used as a privileged scaffold gifted with significantly diversified medicinal properties in the drug discovery and development process. Steroidal molecules are preferred for their rigidness and good ability to penetrate biological membranes. Slight alteration in the basic ring structure results in the formation of steroidal derivatives with a wide range of therapeutic activities. Steroids are not only active as such, conjugating them with various biologically active moieties results in increased lipophilicity, stability, and target specificity with decreased adverse effects. Thus, the steroid nucleus prominently behaves as a biological carrier for small molecules. The steroid bioconjugates offer several advantages such as synergistic activity with fewer side effects due to reduced dose and selective therapy. The steroidal bioconjugates have been widely explored for their usefulness against various disorders and have shown significant utility as anticancer, anti-inflammatory, anticoagulant, antimicrobial, insecticidal/pesticidal, antioxidant, and antiviral agents along with several other miscellaneous activities. This work provides a comprehensive review on the therapeutic progression of steroidal bioconjugates as medicinally active molecules. The review covers potential biological applications of steroidal bioconjugates and would benefit the wider scientific community in their drug discovery endeavors.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Lissette Mora-Medina T, Martínez-Pascual R, Ángel Peña-Rico M, Viñas-Bravo O, Montiel-Smith S, Pérez-Picaso L, Moreno-Díaz H. Preparation and cytotoxic evaluation of new steroidal oximes and aza-homosteroids from diosgenin and cholesterol. Steroids 2022; 182:109012. [PMID: 35307325 DOI: 10.1016/j.steroids.2022.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
Using cholesterol and diosgenin as starting materials, we have designed a straightforward methodology to prepare in a reduced number of steps a novel series of steroidal oximes and their aza-homolactam analogs with four types of side chains: cholestane, spirostane, 22-oxocholestane and 22,26-epoxycholestene. The products were evaluated for their cytotoxic activity against the MCF-7 breast cancer cell line. Moreover, the selectivity of the most active compounds was determined against peripheral blood lymphocytes. Compounds 5, 8 and 13 were found to be the most active derivatives, exhibiting IC50 values in the low micromolar range (7.9-9.5 µM) and excellent selectivities (IC50 > 100 µM) against the non-tumor cell line.
Collapse
Affiliation(s)
- Thalía Lissette Mora-Medina
- División de Estudios de Posgrado, Maestría en Ciencias Químicas, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Roxana Martínez-Pascual
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico.
| | - Miguel Ángel Peña-Rico
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Omar Viñas-Bravo
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Pue., Mexico
| | - Lemuel Pérez-Picaso
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Hermenegilda Moreno-Díaz
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| |
Collapse
|
8
|
Cytocidal Antitumor Effects against Human Ovarian Cancer Cells Induced by B-Lactam Steroid Alkylators with Targeted Activity against Poly (ADP-Ribose) Polymerase (PARP) Enzymes in a Cell-Free Assay. Biomedicines 2021; 9:biomedicines9081028. [PMID: 34440232 PMCID: PMC8394033 DOI: 10.3390/biomedicines9081028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference molecule (positive control), and were tested against four human ovarian cell lines in vitro (UWB1.289 + BRCA1, UWB1.289, SKOV-3 and OVCAR-3). The studied compounds were thereafter compared to 3-AB, a known PARP inhibitor, as well as to Olaparib, a standard third-generation PARP inhibitor, on a PARP assay investigating their inhibitory potential. Finally, a PARP1 and PARP2 mRNA expression analysis by qRT-PCR was produced in order to measure the absolute and the relative gene expression (in mRNA transcripts) between treated and untreated cells. All the investigated hybrid steroid alkylators and POPA decreased in vitro cell growth differentially, according to the sensitivity and different gene characteristics of each cell line, while ASA-A and ASA-B presented the most significant anticancer activity. Both these compounds induced PARP1/2 enzyme inhibition, DNA damage (alkylation) and upregulation of PARP mRNA expression, for all tested cell lines. However, ASA-C underperformed on average in the above tasks, while the compound ASA-B induced synthetic lethality effects on the ovarian cancer cells. Nevertheless, the overall outcome, leading to a drug-like potential, provides strong evidence toward further evaluation.
Collapse
|
9
|
Trafalis DT, Sagredou S, Dalezis P, Voura M, Fountoulaki S, Nikoleousakos N, Almpanakis K, Deligiorgi MV, Sarli V. Anticancer Activity of Triazolo-Thiadiazole Derivatives and Inhibition of AKT1 and AKT2 Activation. Pharmaceutics 2021; 13:pharmaceutics13040493. [PMID: 33916378 PMCID: PMC8066331 DOI: 10.3390/pharmaceutics13040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
The fusion of 1,2,4-triazole and 1,3,4-thiadiazole rings results in a class of heterocycles compounds with an extensive range of pharmacological properties. A series of 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles was synthesized and tested for its enzyme inhibition potential and anticancer activity. The results show that 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles display potent anticancer properties in vitro against a panel of cancer cells and in vivo efficacy in HT-29 human colon tumor xenograft in CB17 severe combined immunodeficient (SCID) mice. Preliminary mechanistic studies revealed that KA25 and KA39 exhibit time- and concentration-dependent inhibition of Akt Ser-473 phosphorylation. Molecular modeling experiments indicated that 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles bind well to the ATP binding site in Akt1 and Akt2. The low acute toxicity combined with in vitro and in vivo anticancer activity render triazolo[3,4-b]thiadiazoles KA25, KA26, and KA39 promising cancer therapeutic agents.
Collapse
Affiliation(s)
- Dimitrios T. Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
- Correspondence: (D.T.T.); (V.S.)
| | - Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Maria Voura
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
| | - Stella Fountoulaki
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Konstantinos Almpanakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
- Correspondence: (D.T.T.); (V.S.)
| |
Collapse
|
10
|
Shalini, Kumar V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin Drug Discov 2020; 16:335-363. [PMID: 33305635 DOI: 10.1080/17460441.2021.1850686] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Cancer continues to be a big threat and its treatment is a huge challenge among the medical fraternity. Conventional anti-cancer agents are losing their efficiency which highlights the need to introduce new anti-cancer entities for treating this complex disease. A hybrid molecule has a tendency to act through varied modes of action on multiple targets at a given time. Thus, there is the significant scope with hybrid compounds to tackle the existing limitations of cancer chemotherapy. AREA COVERED This perspective describes the most significant hybrids that spring hope in the field of cancer chemotherapy. Several hybrids with anti-proliferative/anti-tumor properties currently approved or in clinical development are outlined, along with a description of their mechanism of action and identified drug targets. EXPERT OPINION The success of molecular hybridization in cancer chemotherapy is quite evident by the number of molecules entering into clinical trials and/or have entered the drug market over the past decade. Indeed, the recent advancements and co-ordinations in the interface between chemistry, biology, and pharmacology will help further the advancement of hybrid chemotherapeutics in the future.List of abbreviations: Deoxyribonucleic acid, DNA; national cancer institute, NCI; peripheral blood mononuclear cells, PBMC; food and drug administration, FDA; histone deacetylase, HDAC; epidermal growth factor receptor, EGFR; vascular endothelial growth factor receptor, VEGFR; suberoylanilide hydroxamic acid, SAHA; farnesyltransferase inhibitor, FTI; adenosine triphosphate, ATP; Tamoxifen, TAM; selective estrogen receptor modulator, SERM; structure activity relationship, SAR; estrogen receptor, ER; lethal dose, LD; half maximal growth inhibitory concentration, GI50; half maximal inhibitory concentration, IC50.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| |
Collapse
|
11
|
Promising applications of steroid сonjugates for cancer research and treatment. Eur J Med Chem 2020; 210:113089. [PMID: 33321260 DOI: 10.1016/j.ejmech.2020.113089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
The conjugation of biologically active molecules is a powerful tool for drug discovery used to target a variety of multifunctional diseases including cancer. Conjugated drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. Steroids are widely used for conjugation with other biological active molecules. This review refers to investigations of steroid conjugates as potential anticancer agents carried out mostly over the past decade. It consists of five parts in which the data concerning structure and anticancer activity of steroid conjugates with DNA alkylating agents, metallocomplexes, approved drugs, some biological active molecules, some natural compounds and related synthetic analogs are described.
Collapse
|
12
|
Dalezis P, Geromichalou E, Polonifi A, Sagredou S, Nikoleousakos N, Nikolaou M, Sarli V, Panayiotidis MI, Trafalis DT. Azasteroid Alkylators as Dual Inhibitors of AKT and ERK Signaling for the Treatment of Ovarian Carcinoma. Cancers (Basel) 2020; 12:cancers12051263. [PMID: 32429466 PMCID: PMC7281072 DOI: 10.3390/cancers12051263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Previous findings show that lactam steroidal alkylating esters display improved therapeutic efficacy with reduced toxicity. The aim of this study was to evaluate the anticancer activity of two newly synthesized aza-steroid alkylators (ENGA-L06E and ENGA-L08E) against human ovarian carcinoma cells, and consequently, the dual inhibition of RAS/PI3K/AKT and RAS/RAF/MEK/ERK signaling pathways, both of which are closely associated with ovarian cancer; (2) Methods: The in vitro cytostatic and cytotoxic effects of ENGA-L06E and ENGA-L08E were evaluated in a panel of five human ovarian cancer cell lines, as well as in in vivo studies. ENGA-L06E and ENGA-L08E, in addition to another two aniline-mustard alkylators, POPAM and melphalan (L-PAM), were utilized in order to determine the acute toxicity and antitumor efficacy on two human ovarian xenograft models. Also, in silico studies were performed in order to investigate the dual inhibition of ENGA-L06E and ENGA-L08E on RAS/PI3K/AKT and RAS/RAF/MEK/ERK signaling pathways; (3) Results: Both, in vitro and in vivo studies demonstrated that ENGA-L06E and ENGA-L08E were significantly more effective with a lower toxicity profile in comparison to POPAM and L-PAM alkylators. Moreover, in silico studies demonstrated that the two new aza-steroid alkylators could act as efficient inhibitors of the phosphorylation of AKT and ERK1/2 molecules; and (4) Conclusions: Both ENGA-L06E and ENGA-L08E demonstrated high anticancer activity through the inhibition of the PI3K-AKT and KRAS-ERK signaling pathways against human ovarian carcinoma, and thus constituting strong evidence towards further clinical development.
Collapse
Affiliation(s)
- Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
| | - Eleni Geromichalou
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
| | - Aikaterini Polonifi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
| | - Sofia Sagredou
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
| | - Michael Nikolaou
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Mihalis I. Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 1683 Nicosia, Cyprus
- Correspondence: (M.I.P.); (D.T.T.); Tel.: +357-22392626 (M.I.P); Tel.: +30-210-7468527 (D.T.T.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.G.); (A.P.); (S.S.); (N.N.); (M.N.)
- Correspondence: (M.I.P.); (D.T.T.); Tel.: +357-22392626 (M.I.P); Tel.: +30-210-7468527 (D.T.T.)
| |
Collapse
|
13
|
Savić MP, Škorić DĐ, Kuzminac IZ, Jakimov DS, Kojić VV, Rárová L, Strnad M, Djurendić EA. New A-homo lactam D-homo lactone androstane derivative: Synthesis and evaluation of cytotoxic and anti-inflammatory activities in vitro. Steroids 2020; 157:108596. [PMID: 32068078 DOI: 10.1016/j.steroids.2020.108596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
This paper describes the synthesis of a new A-homo lactam D-homo lactone androstane derivative from dehydroepiandrosterone. To evaluate the impact of the introduction of nitrogen in the parental scaffold on biological activity, a new androstane enamide-type lactam derivative was prepared and characterized. The new compound as well as starting compounds were screened for cytotoxic, anti-angiogenic and anti-inflammatory activities using several human cancer cell lines (MCF-7, MDA-MB-231, PC3, CEM, G-361, HeLa), endothelial (HUVEC) and non-tumour (MRC-5 and BJ) cell lines. Strong cytotoxic and anti-inflammatory activity with a broad therapeutical window was demonstrated by the A-homo lactam D-homo lactone androstane derivative. The induction of apoptosis in treated PC3 cultures was confirmed using apoptotic morphology screening and a fluorescent double-staining method. New A-homo lactam D-homo lactone androstane derivative induced apoptosis more than the tested reference compounds, Formestane and Doxorubicin. An in silico ADME analysis showed that the compounds possess drug-like properties.
Collapse
Affiliation(s)
- Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Dušan Đ Škorić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Vesna V Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Lucie Rárová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Evgenija A Djurendić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
14
|
Discovery of steroidal lactam conjugates of POPAM-NH2 with potent anticancer activity. Future Med Chem 2020; 12:19-35. [DOI: 10.4155/fmc-2019-0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Steroidal prodrugs of nitrogen mustards such as estramustine and prednimustine have proven effective anticancer agents in clinical use since the 1970s. In this work, we aimed to develop steroidal prodrugs of the novel nitrogen mustard POPAM-NH2. POPAM-NH2 is a melphalan analogue that was coupled with three different steroidal lactams. Methodology: The new conjugates were preclinically tested for anticancer activity against nine human and one rodent cancer experimental models, in vitro and in vivo. Results & conclusion: All the steroidal alkylators showed high antitumor activity, in vitro and in vivo, in the experimental systems tested. Moreover, these hybrid compounds showed by far superior anticancer activity compared with the alkylating agents, melphalan and POPAM-NH2.
Collapse
|
15
|
Chen Y, Jia Y, Song W, Zhang L. Therapeutic Potential of Nitrogen Mustard Based Hybrid Molecules. Front Pharmacol 2018; 9:1453. [PMID: 30618747 PMCID: PMC6304445 DOI: 10.3389/fphar.2018.01453] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
As medicine advances, cancer is still among one of the major health problems, posing significant threats to human health. New anticancer agents features with novel scaffolds and/or unique mechanisms of action are highly desirable for the treatment of cancers, especially those highly aggressive and drug-resistant ones. Nitrogen mustard has been widely used as an anticancer drug since the discovery of its antitumor effect in the 1942. However, the lack of selectivity to cancer cells restricts the wide usage of a mass of nitrogen mustard agents to achieve further clinical significance. Discovery of antitumor hybrids using nitrogen mustards as key functional groups has exhibited enormous potential in the drug development. Introduction of nitrogen mustards resulted in improvement in the activity, selectivity, targetability, safety, pharmacokinetics and pharmacodynamics properties of corresponding lead compounds or agents. Herein, the recently developed nitrogen mustard based hybrids have been introduced in the cancer therapy.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Novel c(RGDyK)-based conjugates of POPAM and 5-fluorouracil for integrin-targeted cancer therapy. Future Med Chem 2017; 9:2181-2196. [DOI: 10.4155/fmc-2017-0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: Alkylating agents and antimetabolites are cytotoxic drugs commonly used in cancer treatment. These medications are often associated with serious side effects on normal tissues and organs. Methodology: To improve the pharmacological profile of the alkylating agent POPAM and the antimetabolite 5-fluorouracil, novel integrin-targeted delivery systems based on c(RGDyK) were successfully synthesized. The new conjugates were tested in vitro against different cancer cells such as PC3, SKOV3, A549, MCF7 and MBA-MB-321. Results & conclusion: The c(RGDyK) conjugates of POPAM demonstrated better inhibitory effects and selectivity compared with c(RGDyK) and POPAM. The c(RGDyK) conjugates of 5-FUA demonstrated diverse inhibitory effects compared with c(RGDyK) and 5-FUA related to the levels of integrin expression, the conjugate stability and sensitivity of cancer cells to 5-FUA.
Collapse
|
17
|
Huang Y, Yang C, Zhan J, Gan C, Liu Z, Pang C, Chen H, Cui J. Synthesis and antiproliferative activity of novel A-homo-B-norsteroid thiadiazole derivatives. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Trafalis DT, Polonifi A, Dalezis P, Nikoleousakos N, Katsamakas S, Sarli V. Targeting on poly(ADP-ribose) polymerase activity with DNA-damaging hybrid lactam-steroid alkylators in wild-type and BRCA1-mutated ovarian cancer cells. Chem Biol Drug Des 2017; 90:854-866. [PMID: 28432813 DOI: 10.1111/cbdd.13006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/25/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
Conjugated lactam-steroid alkylators (LSA) have been shown to exhibit superior activity at controlling cancer models and overlap drug resistance to conventional chemjournalapy. Hybrid LSA combine two active compounds in a single molecule and incorporate modified steroids bearing lactam moiety in one or more steroid rings functioning as vectors for cytotoxic agents. We first describe a novel class of LSA that generate excellent anticancer activity against UWB1.289 and UWB1.289 + BRCA1 human ovarian cancer cell lines. Both UWB1.289 and UWB1.289 + BRCA1 cells carry mutations in the tumor suppressor gene TP53 while UWB1.289 cell line carries a germline BRCA1 mutation. In vitro, in vivo, and in silico, experimental methods were utilized to determine the poly(ADP-ribose) polymerases (PARPs) activity and mRNA transcription, DNA damage, cytostatic and cytotoxic effects, and virtual molecular interactions, in order to study the molecular mechanisms of activity of the tested LSA. LSA produce anticancer activity through dual action by combining the direct induction of cellular DNA damage with the inhibition of PARP activity and consecutive DNA repair activity. BRCA1-mutated UWB1.289 ovarian cancer cells with defective PARP-oriented repair mechanism show significantly higher sensitivity to these agents. Combined drug effect on DNA damage and repair is a novel approach in cancer therapeutics.
Collapse
Affiliation(s)
- Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Polonifi
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Katsamakas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|