1
|
Wu YN, Su D, Yang J, Yi Y, Wang AD, Yang M, Li JL, Fan BY, Chen GT, Wang WL, Ling B. Biotransformation of Ursonic Acid by Aspergillus ochraceus and Aspergillus oryzae to Discover Anti-Neuroinflammatory Derivatives. Molecules 2023; 28:7943. [PMID: 38138433 PMCID: PMC10745867 DOI: 10.3390/molecules28247943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Biotransformation of ursonic acid (1) by two fungal strains Aspergillus ochraceus CGMCC 3.5324 and Aspergillus oryzae CGMCC 3.407 yielded thirteen new compounds (4, 5, 7-10, and 13-19), along with five recognized ones. The structural details of new compounds were determined through spectroscopic examination (NMR, IR, and HR-MS) and X-ray crystallography. Various modifications, including hydroxylation, epoxidation, lactonization, oxygen introduction, and transmethylation, were identified on the ursane core. Additionally, the anti-neuroinflammatory efficacy of these derivatives was assessed on BV-2 cells affected by lipopolysaccharides. It was observed that certain methoxylated and epoxylated derivatives (10, 16, and 19) showcased enhanced suppressive capabilities, boasting IC50 values of 8.2, 6.9, and 5.3 μM. Such ursonic acid derivatives might emerge as potential primary molecules in addressing neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Ni Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Dan Su
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Jia Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Ying Yi
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - An-Dong Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Min Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Jian-Lin Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Guang-Tong Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Wen-Li Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Bai Ling
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, The First People’s Hospital of Yancheng, 166 Yulongxi Road, Yancheng 224005, China
| |
Collapse
|
2
|
Qian M, Zeng Y, Mao S, Jia L, Hua E, Lu F, Liu X. Engineering of a fungal steroid 11α-hydroxylase and construction of recombinant yeast for improved production of 11α-hydroxyprogesterone. J Biotechnol 2022; 353:1-8. [PMID: 35654275 DOI: 10.1016/j.jbiotec.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
Cytochrome P450 enzyme CYP68J5 from filamentous fungus Aspergillus ochraceus is industrially used for selective C11α-hydroxylation of canrenone and progesterone. To improve its selectivity of C11α-hydroxylation for relevant steroid substrates, a sequence-based targeted mutagenesis combined with saturation mutagenesis was conducted to search for variants with improved hydroxylation reaction specificity toward progesterone and D-ethylgonendione. Recombinant yeast expressing triple mutant V64F/E65G/N66T showed significantly increased C11α-hydroxylation selectivity (85 % VS WT 69.7 %). Saturation mutagenesis of V64, E65 and N66 resulted in the identification of single mutant V64K with greatly enhanced 11α-hydroxylation specificity toward progesterone (90.6 % VS WT 69.7 %). Furthermore, mutant N66D showed significant enhanced selectivity of C11α-hydroxylation toward D-ethylgonendione (70.8 % VS WT 58 %). Evaluation of recombinant yeast over-expressing V64K for progesterone transformation in 50 mL scale resulted in product 11α-OH progesterone concentrations of 432.5 mg/L, a 30.2 % increase compared with the CYP68J5 control. Our results also reveal that V64, E65 and N66 are key residues of CYP68J5 influencing its selectivity of C11α-hydroxylation, thus offering opportunities for further engineering of CYP68J5 for expanded industrial applications.
Collapse
Affiliation(s)
- Miao Qian
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, China, The College of Chemical Engineering and Materials Science, TUST, Tianjin 300457, China
| | - Yulong Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Erbing Hua
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Xiaoguang Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, China, The College of Chemical Engineering and Materials Science, TUST, Tianjin 300457, China.
| |
Collapse
|
3
|
Rong S, Tang X, Guan S, Zhang B, Li Q, Cai B, Huang J. Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks. J Microbiol Biotechnol 2021; 31:890-901. [PMID: 34024892 PMCID: PMC9706011 DOI: 10.4014/jmb.2104.04002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
The 11α-hydroxylation of canrenone can be catalyzed by Aspergillus ochraceus in bioreactors, where the geometry of the impeller greatly influences the biotransformation. In this study, the effects of the blade number and impeller diameter of a Rushton turbine on the 11α-hydroxylation of canrenone were considered. The results of fermentation experiments using a 50 mm four-blade impeller showed that 3.40% and 11.43% increases in the conversion ratio were achieved by increasing the blade number and impeller diameter, respectively. However, with an impeller diameter of 60 mm, the conversion ratio with a six-blade impeller was 14.42% lower than that with a four-blade impeller. Data from cold model experiments with a large-diameter six-blade impeller indicated that the serious leakage of inclusions and a 22.08% enzyme activity retention led to a low conversion ratio. Numerical simulations suggested that there was good gas distribution and high fluid flow velocity when the fluid was stirred by large-diameter impellers, resulting in a high dissolved oxygen content and good bulk circulation, which positively affected hyphal growth and metabolism. However, a large-diameter six-blade impeller created overly high shear compared to a large-diameter four-blade impeller, thereby decreasing the conversion ratio. The average shear rates of the former and latter cases were 43.25 s-1 and 35.31 s-1, respectively. We therefore concluded that appropriate shear should be applied in the 11α-hydroxylation of canrenone. Overall, this study provides basic data for the scaled-up production of 11α-hydroxycanrenone.
Collapse
Affiliation(s)
- Shaofeng Rong
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Xiaoqing Tang
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Shimin Guan
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China,Corresponding authors S. Guan Phone: +86-021-60873005 E-mail:
| | - Botao Zhang
- Department of Biological Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qianqian Li
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Baoguo Cai
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Juan Huang
- Department of Biological Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China,
J. Huang Phone: +86-021-60873240 E-mail:
| |
Collapse
|
4
|
Savinova OS, Solyev PN, Vasina DV, Tyazhelova TV, Fedorova TV, Savinova TS. Biotransformation of progesterone by Aspergillus nidulans VKPM F-1069 (wild type). Steroids 2019; 149:108421. [PMID: 31176657 DOI: 10.1016/j.steroids.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023]
Abstract
Biotechnological transformation of steroids using enzyme systems of microorganisms is often the only possible method to modify the molecule in the industrial production of steroid drugs. Filamentous fungus Aspergillus nidulans has been little studied as a steroid-transforming microorganism. We studied the ability of the A. nidulans VKPM F-1069 strain to transform progesterone (PG) for the first time. This strain converts PG into 3 main products: 11α-hydroxy-PG, 11α-acetoxy-PG and 6β,11α-dihydroxy-PG. It has been established that in the first stage, the hydroxylation of PG occurs into C11α position, then the formed 11α-hydroxy-PG is modified into 11α-acetoxy-PG and 6β,11α-dihydroxy-PG. It was found that changes in the composition of the growth medium, aeration and the duration of the mycelium cultivation do not affect the qualitative composition of PG transformation products, but their ratios have changed. Under conditions of limited aeration, the direction of secondary modification of 11α-hydroxy-PG is shifted towards the formation of 11α-acetoxy-PG.
Collapse
Affiliation(s)
- Olga S Savinova
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninski prospect, 33, building 2, Moscow 119071, Russian Federation.
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st., 32, Moscow 119991, Russian Federation.
| | - Daria V Vasina
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninski prospect, 33, building 2, Moscow 119071, Russian Federation.
| | - Tatiana V Tyazhelova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russian Federation.
| | - Tatiana V Fedorova
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninski prospect, 33, building 2, Moscow 119071, Russian Federation.
| | - Tatiana S Savinova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskiye gory, 1-3, Moscow 119991, Russian Federation.
| |
Collapse
|
5
|
Bioprocess Intensification Using Flow Reactors: Stereoselective Oxidation of Achiral 1,3-diols with Immobilized Acetobacter Aceti. Catalysts 2019. [DOI: 10.3390/catal9030208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Enantiomerically enriched 2-hydroxymethylalkanoic acids were prepared by oxidative desymmetrisation of achiral 1,3-diols using immobilized cells of Acetobacter aceti in water at 28 °C. The biotransformations were first performed in batch mode with cells immobilized in dry alginate, furnishing the desired products with high molar conversion and reaction times ranging from 2 to 6 h. The biocatalytic process was intensified using a multiphasic flow reactor, where a segmented gas–liquid flow regime was applied for achieving an efficient O2-liquid transfer; the continuous flow systems allowed for high yields and high biocatalyst productivity.
Collapse
|
6
|
Nickavar B, Vahidi H, Eslami M. An efficient biotransformation of progesterone into 11α-hydroxyprogesterone by Rhizopus microsporus var. oligosporus. Z NATURFORSCH C 2018; 74:9-15. [PMID: 30367812 DOI: 10.1515/znc-2018-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023]
Abstract
Rhizopus microsporus var. oligosporus is a fungus that belongs to the Mucoraceae family that is used for the preparation of some soy-fermented foods. Microbial biotransformation of progesterone by R. microsporus var. oligosporus afforded some monohydroxylated and dihydroxylated metabolites. The main product was purified using chromatographic methods and identified as 11α-hydroxyprogesterone on the basis of its spectroscopic features. Time course studies by high-performance thin-layer chromatography demonstrated that this fungi efficiently hydroxylated progesterone at the 11α-position for 3 days with a yield of 76.48%, but beyond this time, the microorganism transformed 11α-hydroxyprogesterone into dihydroxylated metabolites. 11α-Hydroxyprogesterone is widely used as a precursor in the synthesis of hydrocortisone and other steroidal anti-inflammatory agents.
Collapse
Affiliation(s)
- Bahman Nickavar
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran, Phone: +98-21-88200064, Fax: +98-21-88665250, E-mail:
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
| | - Mehrnoosh Eslami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
| |
Collapse
|